Skip to content

Commit 586e8d5

Browse files
committed
Update readme
1 parent 9f4346c commit 586e8d5

File tree

2 files changed

+24
-18
lines changed

2 files changed

+24
-18
lines changed

README.md

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -21,12 +21,10 @@ Scikit-Garden depends on NumPy, SciPy, Scikit-Learn and Cython. So make sure the
2121
pip3 install setuptools numpy scipy scikit-learn cython
2222
```
2323

24-
After that Scikit-Garden can be installed like any other package.
24+
After that Scikit-Garden can be installed using pip.
2525

2626
```
27-
git clone https://github.com/scikit-garden/scikit-garden
28-
cd scikit-garden
29-
python3 setup.py develop
27+
pip install scikit-garden
3028
```
3129

3230
## Available models

docs/index.md

Lines changed: 22 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -4,28 +4,36 @@ Scikit-garden or skgarden (pronounced as skarden) is a garden for scikit-learn c
44

55
## Installation
66

7-
### Dependencies
8-
9-
scikit-garden depends on NumPy, SciPy, scikit-learn and Cython. So make sure these dependencies are installed using pip
7+
Scikit-Garden depends on NumPy, SciPy, Scikit-Learn and Cython. So make sure these dependencies are installed using pip:
108

119
```
12-
pip3 install numpy scipy scikit-learn cython
10+
pip install setuptools numpy scipy scikit-learn cython
1311
```
1412

15-
After that scikit-garden can be installed like any other package.
13+
After that Scikit-Garden can be installed using pip.
1614

1715
```
18-
git clone https://github.com/scikit-garden/scikit-garden
19-
cd scikit-garden
20-
python3 setup.py install
16+
pip install scikit-garden
2117
```
2218

23-
and then you can do
19+
## Usage
20+
21+
The estimators in Scikit-Garden are Scikit-Learn compatible and can serve as a drop-in replacement for Scikit-Learn's trees and forests.
2422

2523
```python
26-
>>> import skgarden
24+
from sklearn.datasets import load_boston
25+
X, y = make_boston()
26+
27+
### Use MondrianForests for variance estimation
28+
from skgarden import MondrianForestRegressor
29+
mfr = MondrianForestRegressor()
30+
mfr.fit(X, y)
31+
y_mean, y_std = mfr.predict(X, return_std=True)
32+
33+
### Use QuantileForests for quantile estimation
34+
from skgarden import RandomForestQuantileRegressor
35+
rfqr = RandomForestQuantileRegressor(random_state=0)
36+
rfqr.fit(X, y)
37+
y_mean = rfqr.predict(X)
38+
y_median = rfqr.predict(X, 50)
2739
```
28-
29-
from anywhere outside the root directory.
30-
31-
### Available models.

0 commit comments

Comments
 (0)