Skip to content

langchain-ai/langchain-sandbox

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

40 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

πŸ›‘οΈ LangChain Sandbox

A secure environment for running Python code using Pyodide (WebAssembly) and Deno

Python 3.10+ Deno License: MIT

πŸ“‹ Overview

LangChain Sandbox provides a secure environment for executing untrusted Python code. It leverages Pyodide (Python compiled to WebAssembly) to run Python code in a sandboxed environment.

✨ Key Features

  • πŸ”’ Security - Isolated execution environment with configurable permissions
  • πŸ’» Local Execution - No remote execution or Docker containers needed
  • πŸ”„ Session Support - Maintain state across multiple code executions

Limitations

  • Latency: There is a few seconds of latency when starting the sandbox per run
  • File access: Currently not supported. You will not be able to access the files written by the sandbox.
  • Network requests: If you need to make network requests please use httpx.AsyncClient instead of requests.

πŸš€ Quick Install

  1. Install Deno (required): https://docs.deno.com/runtime/getting_started/installation/

  2. Install langchain-sandbox:

    pip install langchain-sandbox

πŸ’‘ Example Usage

Warning

Use alllow_net to limit the network requests that can be made by the sandboxed code to avoid SSRF attacks https://docs.deno.com/runtime/fundamentals/security/#network-access

from langchain_sandbox import PyodideSandbox

# Create a sandbox instance
sandbox = PyodideSandbox(
    # Allow Pyodide to install python packages that
    # might be required.
    allow_net=True,
)
code = """\
import numpy as np
x = np.array([1, 2, 3])
print(x)
"""

# Execute Python code
print(await sandbox.execute(code))

# CodeExecutionResult(
#   result=None, 
#   stdout='[1 2 3]', 
#   stderr=None, 
#   status='success', 
#   execution_time=2.8578367233276367,
#   session_metadata={'created': '2025-05-15T21:26:37.204Z', 'lastModified': '2025-05-15T21:26:37.831Z', 'packages': ['numpy']},
#   session_bytes=None
# )

Stateful Sandbox

If you want to persist state between code executions (to persist variables, imports, and definitions, etc.), you can set stateful=True in the sandbox. This will return session_bytes and session_metadata that you can pass to .execute().

Warning

session_bytes contains pickled session state. It should not be unpickled and is only meant to be used by the sandbox itself

sandbox = PyodideSandbox(
    # Create stateful sandbox
    stateful=True,
    # Allow Pyodide to install python packages that
    # might be required.
    allow_net=True,
)
code = """\
import numpy as np
x = np.array([1, 2, 3])
print(x)
"""

result = await sandbox.execute(code)

# Pass previous result
print(await sandbox.execute("float(x[0])", session_bytes=result.session_bytes, session_metadata=result.session_metadata))

#  CodeExecutionResult(
#     result=1, 
#     stdout=None, 
#     stderr=None, 
#     status='success', 
#     execution_time=2.7027177810668945
#     session_metadata={'created': '2025-05-15T21:27:57.120Z', 'lastModified': '2025-05-15T21:28:00.061Z', 'packages': ['numpy', 'dill']},
#     session_bytes=b'\x80\x04\x95d\x01\x00..."
# )

Using as a tool

You can use PyodideSandbox as a LangChain tool:

from langchain_sandbox import PyodideSandboxTool

tool = PyodideSandboxTool()
result = await tool.ainvoke("print('Hello, world!')")

Using with an agent

You can use sandbox tools inside a LangGraph agent:

from langgraph.prebuilt import create_react_agent
from langchain_sandbox import PyodideSandboxTool

tool = PyodideSandboxTool(
    # Allow Pyodide to install python packages that
    # might be required.
    allow_net=True
)
agent = create_react_agent(
    "anthropic:claude-3-7-sonnet-latest",
    tools=[tool],
)
result = await agent.ainvoke(
    {"messages": [{"role": "user", "content": "what's 5 + 7?"}]},
)

Stateful Tool

Important

Stateful PyodideSandboxTool works only in LangGraph agents that use the prebuilt create_react_agent or ToolNode.

If you want to persist state between code executions (to persist variables, imports, and definitions, etc.), you need to set stateful=True:

from langgraph.prebuilt import create_react_agent
from langgraph.prebuilt.chat_agent_executor import AgentState
from langgraph.checkpoint.memory import InMemorySaver
from langchain_sandbox import PyodideSandboxTool, PyodideSandbox

class State(AgentState):
    # important: add session_bytes & session_metadata keys to your graph state schema - 
    # these keys are required to store the session data between tool invocations.
    # `session_bytes` contains pickled session state. It should not be unpickled
    # and is only meant to be used by the sandbox itself
    session_bytes: bytes
    session_metadata: dict

tool = PyodideSandboxTool(
    # Create stateful sandbox
    stateful=True,
    # Allow Pyodide to install python packages that
    # might be required.
    allow_net=True
)
agent = create_react_agent(
    "anthropic:claude-3-7-sonnet-latest",
    tools=[tool],
    checkpointer=InMemorySaver(),
    state_schema=State
)
result = await agent.ainvoke(
    {
        "messages": [
            {"role": "user", "content": "what's 5 + 7? save result as 'a'"}
        ],
        "session_bytes": None,
        "session_metadata": None
    },
    config={"configurable": {"thread_id": "123"}},
)
second_result = await agent.ainvoke(
    {"messages": [{"role": "user", "content": "what's the sine of 'a'?"}]},
    config={"configurable": {"thread_id": "123"}},
)

See full examples here:

🧩 Components

The sandbox consists of two main components:

  • pyodide-sandbox-js: JavaScript/TypeScript module using Deno to provide the core sandboxing functionality.
  • sandbox-py: Contains PyodideSandbox which just wraps the JavaScript/TypeScript module and executes it as a subprocess.