-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbfs_sampler.cpp
137 lines (117 loc) · 4.29 KB
/
bfs_sampler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#include "bfs_sampler.hpp"
#include "logging.hpp"
namespace std {
std::ostream & operator<<(std::ostream &os, BfsSamplerThreadState & tstate) {
os << "TState(" << tstate.rnd << ")";
return os;
}
}
const size_t g_infinite_distance = std::numeric_limits<size_t>::max();
void bfs(const ugraph_t & graph,
const std::vector< bool > & smpl,
std::vector< size_t > & distance_map,
FixedCapacityQueue<ugraph_vertex_t> & queue,
const ugraph_vertex_t root,
const size_t max_dist) {
queue.clear();
queue.push(root);
std::fill(distance_map.begin(), distance_map.end(), g_infinite_distance);
distance_map[root] = 0;
while(!queue.empty()) {
ugraph_vertex_t v = queue.pop();
size_t v_dist = distance_map[v];
size_t new_dist = v_dist+1;
if (new_dist <= max_dist) {
BGL_FORALL_OUTEDGES(v, e, graph, ugraph_t) {
if (smpl[ graph[e].index ]) {
ugraph_vertex_t u = target(e, graph);
size_t u_dist = distance_map[u];
if (new_dist < u_dist) {
distance_map[u] = v_dist+1;
queue.push(u);
}
}
}
}
}
}
void sample(const ugraph_t & g,
BfsSamplerThreadState & tstate,
std::vector<bool> & edge_sample)
{
using namespace boost;
BGL_FORALL_EDGES(e, g, ugraph_t) {
const EdgeData & ed = g[e];
edge_sample[ed.index] = tstate.rnd.next_double() <= ed.probability;
}
}
void BfsSampler::min_probability(const ugraph_t & graph, probability_t prob) {
const size_t n_samples = prob_to_samples(prob);
sample_size(graph, n_samples);
m_min_probability = (prob < m_min_probability)? prob : m_min_probability;
}
void BfsSampler::sample_size(const ugraph_t & graph, size_t total_samples) {
m_used_samples = total_samples;
if (total_samples <= m_samples.size()) {
LOG_INFO("Using " << m_used_samples << " (no new samples)");
return;
}
size_t new_samples = total_samples - m_samples.size();
LOG_INFO("Using " << m_used_samples << " (taking " << new_samples << " new)");
size_t start = m_samples.size();
for (size_t i=0; i<new_samples; ++i) {
// Build a new edge sample vector in place
m_samples.emplace_back(boost::num_edges(graph), false);
}
#pragma omp parallel for default(none) shared(graph, start, new_samples)
for (size_t i=start; i<start+new_samples; ++i) {
auto tid = omp_get_thread_num();
auto & tstate = m_thread_states[tid];
auto & edge_sample = m_samples[i];
sample(graph, tstate, edge_sample);
}
}
size_t BfsSampler::connection_probabilities(const ugraph_t & graph,
const ugraph_vertex_t from,
const std::vector< ugraph_vertex_t > & targets,
std::vector< probability_t > & probabilities) {
return connection_probabilities(graph, from, probabilities);
}
size_t BfsSampler::connection_probabilities(const ugraph_t & graph,
const ugraph_vertex_t from,
std::vector< probability_t > & probabilities) {
const size_t num_samples = m_samples.size();
const size_t n = boost::num_vertices(graph);
// Clear data structures
std::fill(probabilities.begin(), probabilities.end(), 0.0);
for (auto & tstate : m_thread_states) {
std::fill(tstate.connection_counts.begin(), tstate.connection_counts.end(), 0);
}
// Accumulate, in parallel, the connection counts
#pragma omp parallel for default(none) shared(graph)
for (size_t sample_idx=0; sample_idx < num_samples; sample_idx++) {
auto tid = omp_get_thread_num();
auto & tstate = m_thread_states[tid];
const auto & smpl = m_samples[sample_idx];
bfs(graph, smpl, tstate.distance_vector, tstate.queue, from, m_max_dist);
for (size_t i=0; i< n; i++) {
if (tstate.distance_vector[i] < g_infinite_distance) {
tstate.connection_counts[i]++;
}
}
}
// Sum the partial counts together
for (auto & tstate : m_thread_states) {
for (size_t i=0; i< n; i++) {
probabilities[i] += tstate.connection_counts[i];
}
}
size_t cnt = 0;
for (size_t i=0; i< n; i++) {
probabilities[i] /= num_samples;
if (probabilities[i] >= m_min_probability) {
cnt++;
}
}
return cnt;
}