-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcc_sampler.cpp
233 lines (192 loc) · 7.4 KB
/
cc_sampler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#include "cc_sampler.hpp"
#include "logging.hpp"
#include "connected_components.hpp"
namespace std {
std::ostream & operator<<(std::ostream &os, CCSamplerThreadState & tstate) {
os << "TState(" << tstate.rnd << ")";
return os;
}
}
void sample(const ugraph_t & g,
CCSamplerThreadState & tstate)
{
using namespace boost;
BGL_FORALL_EDGES(e, g, ugraph_t) {
const EdgeData & ed = g[e];
tstate.edge_sample[ed.index] = tstate.rnd.next_double() <= ed.probability;
}
}
void CCSampler::min_probability(const ugraph_t & graph, probability_t prob) {
const size_t n_samples = prob_to_samples(prob);
sample_size(graph, n_samples);
m_min_probability = (prob < m_min_probability)? prob : m_min_probability;
}
void CCSampler::sample_size(const ugraph_t & graph, size_t total_samples) {
m_used_samples = total_samples;
if (total_samples <= m_samples.size()) {
LOG_INFO("Using " << m_used_samples << " (no new samples)");
return;
}
size_t new_samples = total_samples - m_samples.size();
LOG_INFO("Using " << m_used_samples << " (taking " << new_samples << " new)");
size_t start = m_samples.size();
for (size_t i=0; i<new_samples; ++i) {
// Build a new connected component vector in place
m_samples.emplace_back(boost::num_vertices(graph), -1);
}
LOG_DEBUG("Allocated the new samples");
#pragma omp parallel for default(none) shared(graph, start, new_samples)
for (size_t i=start; i<start+new_samples; ++i) {
auto tid = omp_get_thread_num();
auto & tstate = m_thread_states[tid];
//sample(graph, tstate);
auto & components = m_samples[i];
union_find(graph, tstate.rnd, tstate.ranks, components);
//connected_components(graph, tstate.edge_sample, components, tstate.stack);
}
}
size_t CCSampler::connection_probabilities(const ugraph_t & graph,
const ugraph_vertex_t from,
std::vector< probability_t > & probabilities) {
const size_t num_samples = m_used_samples;
const size_t n = boost::num_vertices(graph);
// Clear data structures
std::fill(probabilities.begin(), probabilities.end(), 0.0);
for (auto & tstate : m_thread_states) {
std::fill(tstate.connection_counts.begin(), tstate.connection_counts.end(), 0);
}
// Accumulate, in parallel, the connection counts
#pragma omp parallel for default(none) shared(graph)
for (size_t sample_idx=0; sample_idx < num_samples; sample_idx++) {
auto tid = omp_get_thread_num();
auto & connection_counts = m_thread_states[tid].connection_counts;
const auto & smpl = m_samples[sample_idx];
const int root_cc = smpl[from];
for (size_t i=0; i< n; i++) {
if (smpl[i] == root_cc) {
connection_counts[i]++;
}
}
}
// Sum the partial counts together
for (auto & tstate : m_thread_states) {
for (size_t i=0; i< n; i++) {
probabilities[i] += tstate.connection_counts[i];
}
}
size_t cnt = 0;
for (size_t i=0; i< n; i++) {
probabilities[i] /= num_samples;
if (probabilities[i] >= m_min_probability) {
cnt++;
}
}
return cnt;
}
size_t CCSampler::connection_probabilities_cache(const ugraph_t & graph,
const ugraph_vertex_t from,
ConnectionCountsCache & cccache,
std::vector< probability_t > & probabilities) {
const size_t num_samples = m_used_samples;
const size_t n = boost::num_vertices(graph);
// Clear data structures
std::fill(probabilities.begin(), probabilities.end(), 0.0);
for (auto & tstate : m_thread_states) {
std::fill(tstate.connection_counts.begin(), tstate.connection_counts.end(), 0);
}
ConnectionCountsCacheElement & ccc_elem = cccache.get_or_new(from, n);
const size_t starting_sample = ccc_elem.num_samples;
LOG_DEBUG("Node " << from << ": starting from sample " <<
starting_sample << " of " << num_samples << " used");
// Accumulate, in parallel, the connection counts
#pragma omp parallel for default(none) shared(graph)
for (size_t sample_idx=starting_sample; sample_idx < num_samples; sample_idx++) {
auto tid = omp_get_thread_num();
auto & connection_counts = m_thread_states[tid].connection_counts;
const auto & smpl = m_samples[sample_idx];
const int root_cc = smpl[from];
for (size_t i=0; i< n; i++) {
// Doing this way allows GCC (with -O3) to vectorize (probably)
// the code. The if statement is slighlty slower.
connection_counts[i] += ((smpl[i] == root_cc)? 1 : 0);
}
}
// Sum the partial counts together
for (auto & tstate : m_thread_states) {
for (size_t i=0; i< n; i++) {
ccc_elem.counts[i] += tstate.connection_counts[i];
}
}
// Take the maximum because we may get back when doing binary
// search, and we don't want to screw up estimates.
ccc_elem.num_samples = std::max(num_samples, ccc_elem.num_samples);
size_t cnt = 0;
for (size_t i=0; i< n; i++) {
probabilities[i] = ccc_elem.counts[i] / ((double) ccc_elem.num_samples);
if (probabilities[i] >= m_min_probability) {
cnt++;
}
}
return cnt;
}
size_t CCSampler::connection_probabilities(const ugraph_t & graph,
const ugraph_vertex_t from,
const std::vector< ugraph_vertex_t > & targets,
std::vector< probability_t > & probabilities) {
const size_t num_samples = m_samples.size();
// Clear data structures
std::fill(probabilities.begin(), probabilities.end(), 0.0);
for (auto & tstate : m_thread_states) {
std::fill(tstate.connection_counts.begin(), tstate.connection_counts.end(), 0);
}
// Accumulate, in parallel, the connection counts
#pragma omp parallel for default(none) shared(graph, targets)
for (size_t sample_idx=0; sample_idx < num_samples; sample_idx++) {
auto tid = omp_get_thread_num();
auto & tstate = m_thread_states[tid];
const auto & smpl = m_samples[sample_idx];
const int root_cc = smpl[from];
for (const ugraph_vertex_t t : targets) {
if (smpl[t] == root_cc) {
tstate.connection_counts[t]++;
}
}
}
// Sum the partial counts together
for (auto & tstate : m_thread_states) {
for (const ugraph_vertex_t t : targets) {
probabilities[t] += tstate.connection_counts[t];
}
}
size_t cnt = 0;
for (const ugraph_vertex_t t : targets) {
probabilities[t] /= num_samples;
if (probabilities[t] >= m_min_probability) {
cnt++;
}
}
return cnt;
}
probability_t CCSampler::connection_probability(const ugraph_t & graph,
const std::vector< ugraph_vertex_t > & vertices) {
const size_t num_samples = m_samples.size();
const ugraph_vertex_t vertices_root = vertices[0];
size_t count = 0;
// Accumulate the counts in parallel
#pragma omp parallel for reduction(+:count) default(none) shared(vertices)
for(size_t sample_idx=0; sample_idx<num_samples; ++sample_idx) {
const auto & component = m_samples[sample_idx];
const int component_id = component[vertices_root];
bool connected = true;
for(const ugraph_vertex_t v : vertices) {
if (component[v] != component_id) {
connected = false;
break;
}
}
if (connected) {
count++;
}
}
return count / ((double) num_samples);
}