You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
destruct ( natlehchoice _ _ is10 ) as [ l | e ]. apply l . destruct ( is11 e ) . Defined.
27
+
28
+
29
+
Definition ndchainsrestr { i j : nat } { X : Poset } ( chs : ndchains j ( stnposet i ) ) ( chX : ndchains i X ) : ndchains j X .
30
+
Proof . intros . split with ( fun k : stn j => chX ( chs k ) ) . intros j1 j2 . intro is . apply ( pr2 chX _ _ ( natlthinndchainstn chs is ) ) . Defined.
31
+
32
+
33
+
34
+
35
+
36
+
37
+
38
+
39
+
40
+
41
+
42
+
43
+
44
+
45
+
46
+
47
+
48
+
49
+
Definition Ind_tuple ( i : nat ) : total2 ( fun
50
+
51
+
FSkXtoUUcat : forall ( X : Poset ) , UU (* FSkXtoUUcat X := sk_i(N(X)) -> N(UU_cat) *)
52
+
53
+
=> total2 ( fun XtoT : total2 ( fun
54
+
55
+
FSkXtoT : forall ( X : Poset ) ( T : UU ) , UU (* FSkXtoT X T := sk_i(N(X)) -> N(T) *)
56
+
57
+
=>
58
+
59
+
forall ( X : Poset ) ( T : UU ) ( F : T -> UU ) , FSkXtoT X T -> FSkXtoUUcat X
60
+
61
+
)
62
+
63
+
=> dirprod
64
+
65
+
( forall a : FSkXtoUUcat ( stnposet ( S ( S i ) ) ) , UU ) (* a : sk_i(Delta^{i+1}) -> N(UU_cat) => the type of extensions of a to Delta^{i+1}->N(UU_cat) *)
66
+
67
+
( total2 ( fun
68
+
69
+
Phi :forall ( j : nat ) ( is : natgeh j i ) ( X : Poset ) ( xstar : ndchains ( S j ) X ) ( d : FSkXtoUUcat X ) , FSkXtoUUcat ( stnposet ( S j ) )
70
+
71
+
=>
72
+
73
+
forall ( j : nat ) ( is : natgeh j ( S i ) ) ( X : Poset ) ( xstar : ndchains ( S j ) X ) ( di : FSkXtoUUcat X ) ( xstar0 : ndchains ( S ( S i ) ) ( stnposet ( S j ) ) ) , paths ( (Phi (S i) (natgehsnn i) (stnposet (S j)) xstar0 (Phi j (istransnatgeh j (S i) i is (natgehsnn i)) X xstar di))) ( Phi (S i) (natgehsnn i) X (ndchainsrestr xstar0 xstar) di )
74
+
75
+
)))) .
76
+
Proof. intros . induction i as [ | i IHi].
77
+
78
+
(* i=0 *)
79
+
80
+
split with ( fun X : Poset => ( X -> UU ) ) .
81
+
split .
82
+
split with ( fun X => fun T => ( X -> T ) ) .
83
+
exact ( fun X => fun T => fun F => ( fun d => fun x => F ( d x ) ) ) .
84
+
split with ( fun f : stnposet 2 -> UU => ( f ( stnel(2,0) ) -> f ( stnel(2,1) ) ) ) .
85
+
split with ( fun j => fun is => fun X => fun xstar => fun d => fun k => d ( xstar k ) ) .
86
+
87
+
intros . apply idpath.
88
+
89
+
(* i+1 *)
90
+
91
+
set ( FSkXtoUUcat := pr1 IHi ) . set ( FSkXtoT := pr1 ( pr1 ( pr2 IHi ) ) ) . set ( FSkXtoTcomp := pr2 ( pr1 ( pr2 IHi ) ) ) . set ( FDT := pr1 ( pr2 ( pr2 IHi ) ) ) . set ( Phi := pr1 ( pr2 ( pr2 ( pr2 IHi ) ) ) ) . set ( h := pr2 ( pr2 ( pr2 ( pr2 IHi ) ) ) ) . simpl in Phi . simpl in FSkXtoT . simpl in FDT. simpl in h .
92
+
93
+
(*
94
+
95
+
FSkXtoUUcat X = Hom ( sk_i(N(X)) , N(UU_cat) )
96
+
97
+
FSkXtoT X T := Hom ( sk_i(N(X)) , N(T) )
98
+
99
+
FSkXtoTcomp X T F := fun d : sk_i(N(X)) -> N(T) => F \circ d
100
+
101
+
FDT d = the type of extensions of d : sk_i(Delta^{i+1}) -> N(UU_cat) to functions Delta^{i+1} -> N(UU_cat)
102
+
103
+
Phi j is X xstar = restriction map Hom ( sk_i(N(X)) , N(UU_cat) ) -> Hom ( sk_i(Delta^j), N(UU_cat) ) defined by the map xstar:Delta^j -> N(X)
104
+
105
+
*)
106
+
107
+
(* First split with Hom ( sk_{i+1}(N(X)), N(UU_cat) ) *)
108
+
109
+
split with ( fun X => total2 ( fun d : FSkXtoUUcat X => forall xstar : ndchains ( S ( S i ) ) X , FDT ( Phi ( S i ) ( natgehsnn i ) X xstar d ) ) ) .
110
+
111
+
split.
112
+
113
+
(* we need to define for a poset X and a type T the type of functions sk_{i+1}(N(X)) -> N(T) . We try the following definition. *)
114
+
115
+
split with ( fun X => fun T => total2 ( fun d : FSkXtoT X T => forall F : T -> UU, forall xstar : ndchains ( S ( S i ) ) X , FDT ( Phi ( S i ) ( natgehsnn i ) X xstar ( FSkXtoTcomp X T F d ) ) ) ) .
116
+
117
+
(* now we need the composition map d : sk_i(N(X)) -> N(T) => F \circ d where F : T -> UU *)
118
+
119
+
intros X T F dsi . destruct dsi as [ d dall ] . split with ( FSkXtoTcomp X T F d ) . apply ( dall F ) .
120
+
121
+
122
+
split.
123
+
124
+
(* now we need to define for any dsi : sk_{i+1}(Delta^{i+2})-> N(UU_cat) the type of the extensions of dsi to a "functor" Delta^{i+2} -> N(UU_cat) *)
125
+
126
+
intro dsi . destruct dsi as [ d dfill ] .
127
+
128
+
admit.
129
+
130
+
assert ( Phi0 : forall j : nat,
131
+
natgeh j (S i) ->
132
+
forall X : Poset,
133
+
ndchains (S j) X ->
134
+
total2
135
+
(fun d : FSkXtoUUcat X =>
136
+
forall xstar0 : ndchains (S (S i)) X,
137
+
FDT (Phi (S i) (natgehsnn i) X xstar0 d)) ->
138
+
total2
139
+
(fun d0 : FSkXtoUUcat (stnposet (S j)) =>
140
+
forall xstar0 : ndchains (S (S i)) (stnposet (S j)),
141
+
FDT (Phi (S i) (natgehsnn i) (stnposet (S j)) xstar0 d0)) ).
142
+
143
+
144
+
intros j is X xstar.
145
+
146
+
(* Now we need to define for all j >= i+1 the restriction maps Hom ( sk_{i+1}(N(X)) , N(UU_cat) ) -> Hom ( sk_{i+1}(Delta^j), N(UU_cat) ) defined by
147
+
xstar : Delta^j -> N(X) *)
148
+
149
+
intro d . destruct d as [ di dfdt ] . split with ( Phi j (istransnatgeh _ _ _ is (natgehsnn i)) X xstar di ) .
150
+
151
+
intro xstar0.
152
+
153
+
set ( xstar1 := ndchainsrestr xstar0 xstar ) .
154
+
155
+
(* Now we have xstar0 : Delta^{i+1} -> Delta^j , xstar : Delta^j -> N(X) and di : sk_i(N(X)) -> N(UU_cat) and need to define an extension to Delta^{i+1} of the map sk_i(Delta^{i+1}) -> ( sk_i(Delta^{j}) -> sk_i(N(X)) -> N(UU_cat) ) . The idea is that this map equals to the map
156
+
sk_i(Delta^{i+1}->Delta^j->N(X)) -> N(UU_cat) for which we have an extesnion dfdt xstar1 *)
0 commit comments