Skip to content
View seanybaby1122's full-sized avatar

Block or report seanybaby1122

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
seanybaby1122/README.md

prompt: # prompt: prompt: prompt: import networkx as nx

# import networkx as nx

# prompt: import matplotlib.pyplot as plt

# import matplotlib.pyplot as plt

# from matplotlib_venn import venn2

import matplotlib.pyplot as plt

# prompt: from matplotlib_venn import venn2

# import matplotlib.pyplot as plt from matplotlib_venn import venn2

# Assuming 'data' and 'graph' are defined from the previous code

# Assuming 'data' and 'graph' are defined from the previous code

# Step 3: Analyze and visualize the graph (example: Venn diagram)

known_words = set(data["words"].keys())

generated_words = set(node for node, attr in graph.nodes(data=True) if attr.get("category") == "Generated")

venn2([known_words, generated_words], ('Known Words', 'Generated Words'))

plt.title("Known vs. Generated Words")

plt.show()

# Step 3: Analyze and visualize the graph (example: Venn diagram)

known_words = set(data["words"].keys())

generated_words = set(node for node, attr in graph.nodes(data=True) if attr.get("category") == "Generated")

venn2([known_words, generated_words], ('Known Words', 'Generated Words'))

plt.title("Known vs. Generated Words")

plt.show()

# prompt: Define your symbolic data

# # data = {

# # "words": {

# # "DATA": {"category": "Information", "numeric": [68, 65, 84, 65]},

# # "AGRA": {"category": "Location", "numeric": [65, 71, 82, 65]},

# # },

# # "transformations": [

# # {"from": "DATA", "to": "ATAD", "type": "Reverse"},

# # {"from": "DATA", "to": "AGRA", "type": "Substitute"},

# # {"from": "AGRA", "to": "EMIT", "type": "Substitute"},

# # ],

# # }

data = {

"words": {

"DATA": {"category": "Information", "numeric": [68, 65, 84, 65]},

"AGRA": {"category": "Location", "numeric": [65, 71, 82, 65]},

},

"transformations": [

{"from": "DATA", "to": "ATAD", "type": "Reverse"},

{"from": "DATA", "to": "AGRA", "type": "Substitute"},

prompt: # prompt: prompt: import networkx as nx

# import networkx as nx

# prompt: import matplotlib.pyplot as plt

# import matplotlib.pyplot as plt

# from matplotlib_venn import venn2

import matplotlib.pyplot as plt

# prompt: from matplotlib_venn import venn2

# import matplotlib.pyplot as plt from matplotlib_venn import venn2

# Assuming 'data' and 'graph' are defined from the previous code

# Assuming 'data' and 'graph' are defined from the previous code

# Step 3: Analyze and visualize the graph (example: Venn diagram)

known_words = set(data["words"].keys())

generated_words = set(node for node, attr in graph.nodes(data=True) if attr.get("category") == "Generated")

venn2([known_words, generated_words], ('Known Words', 'Generated Words'))

plt.title("Known vs. Generated Words")

plt.show()

# Step 3: Analyze and visualize the graph (example: Venn diagram)

known_words = set(data["words"].keys())

generated_words = set(node for node, attr in graph.nodes(data=True) if attr.get("category") == "Generated")

venn2([known_words, generated_words], ('Known Words', 'Generated Words'))

plt.title("Known vs. Generated Words")

plt.show()

# prompt: Define your symbolic data

# # data = {

# # "words": {

# # "DATA": {"category": "Information", "numeric": [68, 65, 84, 65]},

# # "AGRA": {"category": "Location", "numeric": [65, 71, 82, 65]},

# # },

# # "transformations": [

# # {"from": "DATA", "to": "ATAD", "type": "Reverse"},

# # {"from": "DATA", "to": "AGRA", "type": "Substitute"},

# # {"from": "AGRA", "to": "EMIT", "type": "Substitute"},

# # ],

# # }

data = {

"words": {

"DATA": {"category": "Information", "numeric": [68, 65, 84, 65]},

"AGRA": {"category": "Location", "numeric": [65, 71, 82, 65]},

},

"transformations": [

{"from": "DATA", "to": "ATAD", "type": "Reverse"},

{"from": "DATA", "to": "AGRA", "type": "Substitute"},

{"from": "AGRA", "to": "EMIT", "type": "Substitute"},

],

}

.github/workflows/docker-ci.yml

Popular repositories Loading

  1. seanybaby1122 seanybaby1122 Public

    Config files for my GitHub profile.

    1

  2. gh-copilot gh-copilot Public

    Forked from github/gh-copilot

    Ask for assistance right in your terminal.help with any issues

    Python 1

  3. studious-octo-fiesta studious-octo-fiesta Public

    JARIS

  4. Hy Hy Public

  5. waveterm waveterm Public

    Forked from wavetermdev/waveterm

    An open-source, cross-platform terminal for seamless workflows

    Go

  6. bandersnatch bandersnatch Public

    Forked from pypa/bandersnatch

    A PyPI mirror client according to PEP 381 http://www.python.org/dev/peps/pep-0381/

    Python