Skip to content
View arnaudstdr's full-sized avatar
🏠
Working from home
🏠
Working from home

Block or report arnaudstdr

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
arnaudstdr/README.md

Hi, I'm Arnaud 👋

🎯 Currently available for freelance missions in MLOps and Python development
🚀 I design and deploy full-stack ML systems — from data scraping and preprocessing to training, deployment, and automation.


🧠 What I do

After 12 years in industry solving complex technical challenges, I now build smart ML systems with a strong delivery mindset.

I build end-to-end AI solutions using:

  • MLflow, Vertex AI, Docker, FastAPI, Streamlit, Gradio
  • LangChain & OpenAI to create smart AI agents
  • CI/CD pipelines with GitHub Actions

🛠️ My freelance services

  • 🌐 Deploying ML models (API + Docker + GCP, MLflow, CI/CD)
  • 🤖 Building custom AI agents (OpenAI, LangChain, scraping + summarization)
  • 📊 Creating interactive dashboards (Streamlit, Gradio, FastAPI)
  • 🔁 Automating ML workflows & MLOps pipelines (training, monitoring, versioning)

👨‍💻 Tech I'm comfortable with

PythonDockerGCPMLflowFastAPILangChainStreamlitGitHub Actions
(+ a good dose of curiosity and pragmatism 😄)


📍 Based in Strasbourg – Working 100% remote

Feel free to check my pinned projects or reach out if you have a project in mind!


🔍 Build in public. Share the struggles. Deploy what matters.

Pinned Loading

  1. mlops-deploy-monitor mlops-deploy-monitor Public

    Projet MLOps : entraîner, déployer et surveiller un modèle ML basé sur le projet ml_calories_burned_predictor

    Python 2

  2. resume_news resume_news Public

    Pipeline automatisé de veille IA générant chaque semaine un résumé structuré à partir de flux RSS, avec scraping, normalisation, stockage SQLite et exécution via Docker.

    Python

  3. ml-energy-predictor-api ml-energy-predictor-api Public

    Ce projet est une démonstration de la mise en production d’un modèle de Machine Learning à travers une API Flask et une interface utilisateur Streamlit.

    Jupyter Notebook

  4. ml_calories_burned_predictor ml_calories_burned_predictor Public

    🔍 Projet ML complet : dataset synthétique, modèle Random Forest, app déployable en Streamlit.

    Jupyter Notebook

  5. domestique-ai domestique-ai Public

    Python

  6. tweet_sentiment_analysis tweet_sentiment_analysis Public

    Projet d'analyse des sentiments exprimés dans des tweets en utilisant des techniques de NLP et de deep learning

    Jupyter Notebook