Skip to content

A variant of Typed Lambda Calculus with generalized variable punning (ad-hoc polymorphism)

License

Notifications You must be signed in to change notification settings

andrew-johnson-4/PunCalculus

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A variant of Typed Lambda Calculus with generalized variable punning (ad-hoc polymorphism). This methodology may be useful for adapting other type theories into concurrent domains.

Contribution

Ad-Hoc Polymorphism is introduced to the Simply Typed Lambda Calculus by pluralizing lambda abstractions. Terms such as λx:X. y are represented instead as λ⟨x:X. y⟩. Plural abstractions are represented with more braces: λ⟨a:A. b⟩⟨x:X. y⟩. The type system is also extended slightly to support plural types: A + B.

Types

$$abstraction \quad \frac{\Gamma \vdash a:A \quad \Gamma \vdash b:B \quad \Gamma \vdash x:X \quad \Gamma \vdash y:Y \quad λ⟨a.b⟩⟨x.y⟩}{\Gamma \vdash λ⟨a.b⟩⟨x.y⟩:(A \to B) + (X \to Y)}$$

$$application \quad \frac{\Gamma \vdash f:(A \to B) + (C \to D) + (X \to Y) \quad \Gamma \vdash x:A + X \quad f(x)}{\Gamma \vdash f(x):B + Y}$$

Evaluation

Rules for evaluation are mostly the same as lambda calculus with the exception of plural arrows that may carry multiple values at a time. This feature leads to the possibility of plural values which may diverge in new ways.

Example split (singular value yields plural):

λ⟨a:Int.True⟩⟨x:Int.x⟩ 3
---------------------------------
⟨True⟩⟨3⟩

Example merge (plural value yields singular):

λ⟨a:Bool.2⟩⟨x:Int.2⟩ (⟨False⟩⟨5⟩)
---------------------------------
⟨2⟩

Example carry (plural value yields plural):

λ⟨a:Bool.not a⟩⟨x:Int.- x 2⟩ (⟨False⟩⟨5⟩)
---------------------------------
⟨True⟩⟨3⟩

Optional Constraints

It may often be desirable to entirely prevent plural values. This would require the type system to show that no splits will happen, which are always the root cause of plural values. Notice that plural types always have plural values.

$$ban \ plurals \quad \frac{\Gamma \vdash f:(A \to B)+(A \to C) \quad \Gamma \vdash x:A \quad \Gamma \vdash f(x)}{\Gamma \vdash \bot}$$

Banning plurals still permits ad-hoc polymorphism in the either-or cases.

Notes

"Plural Types" are similar to product types plus the implicit subtyping relations that A + B ⇒ A and A + B ⇒ B. Types are either singular or plural, never both. If you want to turn A + B into a singular type, then you could write it as its corresponding product: (A,B).

Direct Citations

A very brisk introduction to Type Theory

Similar Work

The Kernel of Ad Hoc Polymorphism

About

A variant of Typed Lambda Calculus with generalized variable punning (ad-hoc polymorphism)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published

Languages