Mukh (मुख, meaning "face" in Sanskrit) is a comprehensive face analysis library that provides unified APIs for various face-related tasks. It simplifies the process of working with multiple face analysis models through a consistent interface.
- 🥸 DeepFake Detector: First python package featuring an Ensemble of multiple models
- 🎯 Unified API: Single, consistent API for multiple face analysis tasks like face detection and reenactment
- 🔄 Model Flexibility: Support for multiple models per task
- 🛠️ Custom Pipelines: Optimized preprocessing and model combinations
The library is documented in detail, click here to view the documentation.
- Face Detection
- Face Reenactment with Source Image and Driving Video
- Deepfake Detection for Image and Video
- Deepfake Detection Pipeline - Ensemble of multiple models
conda create -n mukh-dev python=3.10 -y
conda activate mukh-dev
pip install mukh==0.1.14
from mukh.face_detection import FaceDetector
# Initialize detector
detection_model = "mediapipe" # Other models: "blazeface", "ultralight"
detector = FaceDetector.create(detection_model)
# Detect faces
detections = detector.detect(
image_path="assets/images/img1.jpg", # Path to the image to detect faces in
save_json=True, # Save the detections to a JSON file
json_path=f"output/{detection_model}/detections.json", # Path to save the JSON file
save_annotated=True, # Save the annotated image
output_folder=f"output/{detection_model}", # Path to save the annotated image
)
python examples/face_detection/basic_detection_single_image.py --detection_model mediapipe

image_name | x1 | y1 | x2 | y2 | confidence
img1.jpg | 62 | 228 | 453 | 619 | 0.9381868243217468
from mukh.reenactment import FaceReenactor
# Initialize reenactor
reenactor_model = "tps" # Available models: "tps"
reenactor = FaceReenactor.create(reenactor_model)
# Reenact face
result_path = reenactor.reenact_from_video(
source_path="assets/images/img1.jpg", # Path to the source image
driving_video_path="assets/videos/video.mp4", # Path to the driving video
output_path=f"output/{reenactor_model}", # Path to save the reenacted video
save_comparison=True, # Save the comparison video
resize_to_image_resolution=False, # Resize the reenacted video to the image resolution
)
python examples/reenactment/basic_reenactment.py \
--reenactor_model tps \
--source_path assets/images/img1.jpg \
--driving_video_path assets/videos/video_1sec.mp4 \
--output_folder output
comparison_img1_by_video_1sec.mp4
import torch
from mukh.deepfake_detection import DeepfakeDetector
# Initialize detector
detection_model = "efficientnet" # Other models "resnet_inception"
detector = DeepfakeDetector(
model_name=detection_model,
confidence_threshold=0.5,
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
)
# Detect deepfakes in Images
media_path = "assets/images/img1.jpg"
detections, final_result = detector.detect(
media_path=media_path, # Path to the media file (image/video)
save_csv=True, # Save the detections to a CSV file
csv_path=f"output/{detection_model}/deepfake_detections.csv", # Path to save the CSV file
save_annotated=True, # Save the annotated media
output_folder=f"output/{detection_model}", # Path to save the annotated media
)
python examples/deepfake_detection/detection.py \
--detection_model resnet_inception \
--media_path assets/images/img1.jpg \
--confidence_threshold 0.5
media_name | frame_number | is_deepfake | confidence | model_name
img1.jpg | 0 | False | 0.99 | efficientnet
import torch
from mukh.deepfake_detection import DeepfakeDetector
# Initialize detector
detection_model = "efficientnet" # Other models "resnet_inception"
detector = DeepfakeDetector(
model_name=detection_model,
confidence_threshold=0.5,
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
)
# Detect deepfakes in Videos
media_path = "assets/videos/deepfake_elon_musk.mp4"
detections, final_result = detector.detect(
media_path=media_path, # Path to the media file (image/video)
save_csv=True, # Save the detections to a CSV file
csv_path=f"output/{detection_model}/deepfake_detections.csv", # Path to save the CSV file
save_annotated=True, # Save the annotated media
output_folder=f"output/{detection_model}", # Path to save the annotated media
num_frames=11, # Number of equally spaced frames for video analysis
)
python examples/deepfake_detection/detection.py \
--detection_model resnet_inception \
--media_path assets/videos/deepfake_elon_musk.mp4 \
--confidence_threshold 0.5 \
--num_frames 11
media_name | frame_number |is_deepfake|confidence| model_name
deepfake_elon_musk.mp4 | 0 | True | 0.99 |EfficientNetAutoAttB4
deepfake_elon_musk.mp4 | 43 | True | 0.69 |EfficientNetAutoAttB4
deepfake_elon_musk.mp4 | 86 | False | 0.73 |EfficientNetAutoAttB4
deepfake_elon_musk.mp4 | 172 | True | 0.95 |EfficientNetAutoAttB4
deepfake_elon_musk.mp4 | 215 | True | 0.98 |EfficientNetAutoAttB4
deepfake_elon_musk.mp4 | 129 | True | 0.96 |EfficientNetAutoAttB4
deepfake_elon_musk.mp4 | 258 | True | 0.53 |EfficientNetAutoAttB4
deepfake_elon_musk.mp4 | 301 | True | 0.77 |EfficientNetAutoAttB4
deepfake_elon_musk.mp4 | 344 | False | 0.83 |EfficientNetAutoAttB4
deepfake_elon_musk.mp4 | 387 | True | 0.62 |EfficientNetAutoAttB4
deepfake_elon_musk.mp4 | 431 | False | 0.79 |EfficientNetAutoAttB4
| deepfake_elon_musk.mp4 | EfficientNetAutoAttB4 | 8/11 deepfake frames | Final: DEEPFAKE
from mukh.pipelines.deepfake_detection import PipelineDeepfakeDetection
# Define model configurations with weights
model_configs = {
"resnet_inception": 0.5,
"efficientnet": 0.5
}
# Create ensemble detector
pipeline = PipelineDeepfakeDetection(model_configs)
media_path = "assets/videos/deepfake_elon_musk.mp4" # Or pass an image path
# Detect deepfakes
result = pipeline.detect(
media_path=media_path,
output_folder="output/deepfake_detection_pipeline",
save_csv=True,
num_frames=11, # Number of equally spaced video frames for analysis
)
python examples/pipelines/deepfake_detection.py \
--media_path assets/videos/deepfake_elon_musk.mp4 \
--output_folder output/deepfake_detection_pipeline
Ensemble confidence score
frame_number|is_deepfake|confidence
0 | True | 0.5
43 | True | 0.84
86 | True | 0.635
129 | True | 0.98
172 | True | 0.975
215 | True | 0.99
258 | True | 0.765
301 | True | 0.885
344 | True | 0.585
387 | True | 0.81
431 | True | 0.605
Result from the respective models
| deepfake_elon_musk.mp4 | ResNetInception | 10/11 deepfake frames | Final: DEEPFAKE
| deepfake_elon_musk.mp4 | EfficientNetAutoAttB4 | 8/11 deepfake frames | Final: DEEPFAKE
Final Pipeline Output
Final Ensemble Result: DEEPFAKE
Deepfake frames: 11/11
Average confidence: 0.7791
Model configurations: {
'resnet_inception': 0.5,
'efficientnet': 0.5
}
For a detailed list of models, libraries, and datasets used, please refer to CITATIONS.md.
For questions and feedback, please open an issue on GitHub.