Skip to content

Commit 132b63e

Browse files
authored
GH-604: Fix typo in rows vs columns (#605)
1 parent d74e822 commit 132b63e

File tree

2 files changed

+4
-4
lines changed

2 files changed

+4
-4
lines changed

_posts/2025-01-10-arrow-result-transfer-japanese.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -62,8 +62,8 @@ Apache Arrowオープンソースプロジェクトは[データフォーマッ
6262
列指向(カラムナー)データフォーマットは各カラムの値をメモリー上の連続した領域に保持します。これは行指向データフォーマットとは対象的です。行指向データフォーマットは各行の値をメモリー上の連続した領域に保持します。
6363

6464
<figure style="text-align: center;">
65-
<img src="{{ site.baseurl }}/img/arrow-result-transfer/part-1-figure-1-row-vs-column-layout.png" width="100%" class="img-responsive" alt="図1:3行5列のテーブルの物理メモリーレイアウトは行指向と列指向でどのように違うのか">
66-
<figcaption>図1:3行5列のテーブルの物理メモリーレイアウトは行指向と列指向でどのように違うのか。</figcaption>
65+
<img src="{{ site.baseurl }}/img/arrow-result-transfer/part-1-figure-1-row-vs-column-layout.png" width="100%" class="img-responsive" alt="図1:5行3列のテーブルの物理メモリーレイアウトは行指向と列指向でどのように違うのか">
66+
<figcaption>図1:5行3列のテーブルの物理メモリーレイアウトは行指向と列指向でどのように違うのか。</figcaption>
6767
</figure>
6868

6969
高性能な分析データベース・データウェアハウス・クエリーエンジン・ストレージシステムは列指向アーキテクチャーを採用することが多いです。これは、よく使われる分析クエリーを高速に実行するためです。最新の列指向クエリーシステムは、Amazon Redshift・Apache DataFusion・ClickHouse・Databricks Photon Engine・DuckDB・Google BigQuery・Microsoft Azure Synapse Analytics・OpenText Analytics Database (Vertica)・Snowflake・Voltron Data Theseusなどです。

_posts/2025-01-10-arrow-result-transfer.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -62,8 +62,8 @@ The Apache Arrow open source project defines a [data format](https://arrow.apach
6262
Columnar (column-oriented) data formats hold the values for each column in contiguous blocks of memory. This is in contrast to row-oriented data formats, which hold the values for each row in contiguous blocks of memory.
6363

6464
<figure style="text-align: center;">
65-
<img src="{{ site.baseurl }}/img/arrow-result-transfer/part-1-figure-1-row-vs-column-layout.png" width="100%" class="img-responsive" alt="Figure 1: An illustration of row-oriented and column-oriented physical memory layouts of a table containing three rows and five columns.">
66-
<figcaption>Figure 1: An illustration of row-oriented and column-oriented physical memory layouts of a table containing three rows and five columns.</figcaption>
65+
<img src="{{ site.baseurl }}/img/arrow-result-transfer/part-1-figure-1-row-vs-column-layout.png" width="100%" class="img-responsive" alt="Figure 1: An illustration of row-oriented and column-oriented physical memory layouts of a table containing three columns and five rows.">
66+
<figcaption>Figure 1: An illustration of row-oriented and column-oriented physical memory layouts of a table containing three columns and five rows.</figcaption>
6767
</figure>
6868

6969
High-performance analytic databases, data warehouses, query engines, and storage systems have converged on columnar architecture because it speeds up the most common types of analytic queries. Examples of modern columnar query systems include Amazon Redshift, Apache DataFusion, ClickHouse, Databricks Photon Engine, DuckDB, Google BigQuery, Microsoft Azure Synapse Analytics, OpenText Analytics Database (Vertica), Snowflake, and Voltron Data Theseus.

0 commit comments

Comments
 (0)