From 34dc43e3a73d9f4c6b5acb18d143777ae100b103 Mon Sep 17 00:00:00 2001
From: Harry Dulaney <harrydulaney@gmail.com>
Date: Sat, 6 Jan 2024 22:03:09 -0500
Subject: [PATCH] Fix Graham Scan

---
 ch_22/Exercise22_11.java | 131 +++++++++++++++------------
 ch_22/Exercise22_13.java | 191 +++++++++++++++++++++++++++++++++++++++
 2 files changed, 266 insertions(+), 56 deletions(-)
 create mode 100644 ch_22/Exercise22_13.java

diff --git a/ch_22/Exercise22_11.java b/ch_22/Exercise22_11.java
index c8371c0..5abab62 100644
--- a/ch_22/Exercise22_11.java
+++ b/ch_22/Exercise22_11.java
@@ -22,7 +22,7 @@
  * public void setRightMostLowestPoint(MyPoint p) {<br>
  * rightMostLowestPoint = p;<br>
  * }<br>
- * \ @Override public int compareTo(MyPoint o) {<br>
+ * \@Override public int compareTo(MyPoint o) {<br>
  * // Implement it to compare this point with point o<br>
  * // angularly along the x-axis with rightMostLowestPoint<br>
  * // as the center, as shown in Figure 22.10b. By implementing<br>
@@ -67,72 +67,99 @@ public static void main(String[] args) {
     }
 
     public static ArrayList<MyPoint> getConvexHull(double[][] s) {
-        /* Find Lowest and Rightest Point */
-        double yMin = s[0][1];
-        int minPos = 0;
-        // Find the bottom most point
+        /* Grahams Algorithm:
+         Step 1: Given a list of points S, select the rightmost lowest.
+         */
+        double[] lowestRightMostPt = s[0]; // initialize to first point
         for (int i = 1; i < s.length; i++) {
-            double y = s[i][1];
+            double[] nextPt = s[i];
             // Pick the bottom-most or chose the right
             // most point in case of tie
-            if ((y < yMin) || (yMin == y && s[i][0] > s[minPos][0])) {
-                yMin = s[i][1];
-                minPos = i;
-
-            }
+            lowestRightMostPt = getLowestRightMostPoint(lowestRightMostPt, nextPt);
         }
-        // Swamp the bottom-most point for first position
-        double[] temp = s[0];
-        s[0] = s[minPos];
-        s[minPos] = temp;
-        MyPoint rightMostLowestPoint = new MyPoint(s[0][0], s[0][1]);
-        ArrayList<MyPoint> rawPoints = new ArrayList<>();
-        rawPoints.add(rightMostLowestPoint);
-        // Create array of MyPoint objects and set rightMostLowestPoint
-        for (int i = 1; i < s.length; i++) {
-            MyPoint pt = new MyPoint(s[i][0], s[i][1]);
-            pt.setRightMostLowestPoint(rightMostLowestPoint);
-            rawPoints.add(pt);
-        }
-        ArrayList<MyPoint> cleanedPoints = new ArrayList<>();
-        cleanedPoints.add(rightMostLowestPoint);
-        //Clean points with same angle
-        for (int i = 1; i < rawPoints.size() - 1; i++) {
-            // Only add points where the angle of p[i] and p[i+1] is NOT the same with respect to p0
-            if (orientation(rightMostLowestPoint, rawPoints.get(i), rawPoints.get(i + 1)) != 0) {
-                cleanedPoints.add(rawPoints.get(i));
-            }
+        MyPoint rightMostLowestPoint = new MyPoint(lowestRightMostPt[0], lowestRightMostPt[1]);
+        /*
+        Step 2: Sort the points in S angularly along the x-axis with p0 as the
+        center, as shown in Figure 22.10b. If there is a tie and two points have
+        the same angle, discard the one that is closer to p0. The points in S are
+        now sorted as p0, p1, p2, ..., pn-1.
+         */
+        // For Step 2 - We use Comparable interface to sort the points to simplify coding.
+        ArrayList<MyPoint> pointsList = new ArrayList<>();
+        for (double[] pt : s) {
+            MyPoint p = new MyPoint(pt[0], pt[1]);
+            p.setRightMostLowestPoint(rightMostLowestPoint);
+            pointsList.add(p);
         }
+
         // If modified array of points has less than 3 points,
         // convex hull is not possible
-        if (cleanedPoints.size() < 3) {
+        if (pointsList.size() < 3) {
             throw new RuntimeException("Graham's Algorithm for ConvexHull requires " +
                     "at least 3 points with different angles...");
         }
-        Collections.sort(cleanedPoints);
+        Collections.sort(pointsList);
         // Graham scan
         // Create an empty stack and push first three points to it
+       /* Step 3: Push p0, p1, and p2 into stack H. (After the algorithm finishes,
+                H contains all the points in the convex hull.)
+        i = 3;
+        while (i < n) {
+            Let t1 and t2 be the top first and second element in stack H;
+            if (pi is on the left side of the direct line from t2 to t1) {
+                Push pi to H;
+                i++; // Consider the next point in S.
+            }
+                       else
+            Pop the top element off stack H.
+        }
+        Step 5: The points in H form a convex hull.
+        */
         Stack<MyPoint> stack = new Stack<>();
-        int m = cleanedPoints.size();
-        stack.push(cleanedPoints.get(0)); // p0 (lowest and rightest point)
-        stack.push(cleanedPoints.get(1)); // p1
-        stack.push(cleanedPoints.get(2)); // p2
+        int m = pointsList.size();
+        MyPoint p0 = pointsList.get(0);
+        MyPoint p1 = pointsList.get(1);
+        MyPoint p2 = pointsList.get(2);
+        stack.push(p0);
+        stack.push(p1);
+        stack.push(p2);
         // Process remaining n-3 points
-        for (int i = 3; i < m; i++) {
+        int i = 3;
+        while (i < m) {
             // Keep removing top while the angle formed by
             // points next-to-top, top, and points[i] makes
             // a non-left turn
-            while (orientation(nextToTop(stack), stack.peek(), cleanedPoints.get(i)) != 2) {
-                stack.pop();
-                stack.push(cleanedPoints.get(i));
+            MyPoint p3 = pointsList.get(i);
+            int orientation = orientation(p2, p1, p3);
+            if (orientation == 2) {
+                stack.push(p3);
+            } else if (orientation == 1) {
+                stack.pop(); // pop p2
+                stack.push(p3);
+            } else {
+                stack.pop(); // pop p2
             }
+            p2 = stack.peek();
+            p1 = stack.get(stack.size() - 2);
+            i++;
 
         }
         // Now stack has the output points, print contents of stack
-
         return new ArrayList<>(stack);
     }
 
+
+    static double[] getLowestRightMostPoint(double[] pt1, double[] pt2) {
+        if (pt2[1] < pt1[1]) {
+            return pt2;
+        } else if (pt2[1] == pt1[1]) {
+            if (pt2[0] > pt1[0]) {
+                return pt2;
+            }
+        }
+        return pt1;
+    }
+
     /**
      * To find orientation of ordered triplet (p, q, r).
      *
@@ -159,17 +186,6 @@ static double distSq(MyPoint p1, MyPoint p2) {
                 (p1.y - p2.y) * (p1.y - p2.y);
     }
 
-    /**
-     * A utility function to find next to top in a stack
-     */
-    static MyPoint nextToTop(Stack<MyPoint> s) {
-        MyPoint p = s.pop();
-        MyPoint res = s.peek();
-        s.push(p);
-        return res;
-    }
-
-
     private static class MyPoint implements Comparable<MyPoint> {
         double x, y;
         MyPoint rightMostLowestPoint;
@@ -195,15 +211,18 @@ public int compareTo(MyPoint o) {
             // Find orientation
             int orientation = orientation(rightMostLowestPoint, this, o);
             if (orientation == 0) {
-                return distSq(rightMostLowestPoint, o) >= distSq(rightMostLowestPoint, this) ? -1 : 1;
+                double distSqObj1 = distSq(rightMostLowestPoint, this);
+                double distSqObj2 = distSq(rightMostLowestPoint, o);
+                return Double.compare(distSqObj1, distSqObj2);
             }
-            return (orientation == 2) ? -1 : 1;
+            return (orientation == 2) ? 1 : -1;
         }
 
         @Override
         public String toString() {
             return "(" + x + ", " + y + ")";
         }
+
     }
 
 }
diff --git a/ch_22/Exercise22_13.java b/ch_22/Exercise22_13.java
new file mode 100644
index 0000000..c918326
--- /dev/null
+++ b/ch_22/Exercise22_13.java
@@ -0,0 +1,191 @@
+package ch_22;
+
+import java.util.*;
+
+/**
+ * **22.13 (Geometry: convex hull animation) Programming Exercise 22.11 finds a convex hull for a set of points
+ * entered from the console. Write a program that enables the user to add/remove points by clicking the left/right
+ * mouse button, and displays a convex hull, as shown in Figure 22.8c.
+ */
+public class Exercise22_13 {
+    public static void main(String[] args) {
+        Scanner scanner = new Scanner(System.in);
+        System.out.print("How many points are in the set? ");
+        int numPoints = scanner.nextInt();
+        if (numPoints < 3) {
+            throw new RuntimeException("Graham's Algorithm for ConvexHull requires at least 3 points...");
+        }
+
+        double[][] points = new double[numPoints][2];
+        System.out.print("Enter " + numPoints + " points: ");
+
+        for (int i = 0; i < points.length; i++) {
+            for (int j = 0; j < 2; j++) {
+                points[i][j] = scanner.nextDouble();
+            }
+        }
+        List<MyPoint> result = getConvexHull(points);
+        System.out.println("The convex hull is: ");
+        System.out.println(Arrays.toString(result.toArray()));
+    }
+
+    public static ArrayList<MyPoint> getConvexHull(double[][] s) {
+        /* Grahams Algorithm:
+         Step 1: Given a list of points S, select the rightmost lowest.
+         */
+        double[] lowestRightMostPt = s[0]; // initialize to first point
+        for (int i = 1; i < s.length; i++) {
+            double[] nextPt = s[i];
+            // Pick the bottom-most or chose the right
+            // most point in case of tie
+            lowestRightMostPt = getLowestRightMostPoint(lowestRightMostPt, nextPt);
+        }
+        MyPoint rightMostLowestPoint = new MyPoint(lowestRightMostPt[0], lowestRightMostPt[1]);
+        /*
+        Step 2: Sort the points in S angularly along the x-axis with p0 as the
+        center, as shown in Figure 22.10b. If there is a tie and two points have
+        the same angle, discard the one that is closer to p0. The points in S are
+        now sorted as p0, p1, p2, ..., pn-1.
+         */
+        // For Step 2 - We use Comparable interface to sort the points to simplify coding.
+        ArrayList<MyPoint> pointsList = new ArrayList<>();
+        for (double[] pt : s) {
+            MyPoint p = new MyPoint(pt[0], pt[1]);
+            p.setRightMostLowestPoint(rightMostLowestPoint);
+            pointsList.add(p);
+        }
+
+        // If modified array of points has less than 3 points,
+        // convex hull is not possible
+        if (pointsList.size() < 3) {
+            throw new RuntimeException("Graham's Algorithm for ConvexHull requires " +
+                    "at least 3 points with different angles...");
+        }
+        Collections.sort(pointsList);
+        // Graham scan
+        // Create an empty stack and push first three points to it
+       /* Step 3: Push p0, p1, and p2 into stack H. (After the algorithm finishes,
+                H contains all the points in the convex hull.)
+        i = 3;
+        while (i < n) {
+            Let t1 and t2 be the top first and second element in stack H;
+            if (pi is on the left side of the direct line from t2 to t1) {
+                Push pi to H;
+                i++; // Consider the next point in S.
+            }
+                       else
+            Pop the top element off stack H.
+        }
+        Step 5: The points in H form a convex hull.
+        */
+        Stack<MyPoint> stack = new Stack<>();
+        int m = pointsList.size();
+        MyPoint p0 = pointsList.get(0);
+        MyPoint p1 = pointsList.get(1);
+        MyPoint p2 = pointsList.get(2);
+        stack.push(p0);
+        stack.push(p1);
+        stack.push(p2);
+        // Process remaining n-3 points
+        int i = 3;
+        while (i < m) {
+            // Keep removing top while the angle formed by
+            // points next-to-top, top, and points[i] makes
+            // a non-left turn
+            MyPoint p3 = pointsList.get(i);
+            int orientation = orientation(p2, p1, p3);
+            if (orientation == 2) {
+                stack.push(p3);
+            } else if (orientation == 1) {
+                stack.pop(); // pop p2
+                stack.push(p3);
+            } else {
+                stack.pop(); // pop p2
+            }
+            p2 = stack.peek();
+            p1 = stack.get(stack.size() - 2);
+            i++;
+
+        }
+        // Now stack has the output points, print contents of stack
+        return new ArrayList<>(stack);
+    }
+
+
+    static double[] getLowestRightMostPoint(double[] pt1, double[] pt2) {
+        if (pt2[1] < pt1[1]) {
+            return pt2;
+        } else if (pt2[1] == pt1[1]) {
+            if (pt2[0] > pt1[0]) {
+                return pt2;
+            }
+        }
+        return pt1;
+    }
+
+    /**
+     * To find orientation of ordered triplet (p, q, r).
+     *
+     * @param p first point
+     * @param q second point
+     * @param r third point
+     * @return 0 --> p, q and r are co-linear
+     * 1 --> Clockwise
+     * 2 --> Counterclockwise
+     */
+    static int orientation(MyPoint p, MyPoint q, MyPoint r) {
+        double val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
+        if (val == 0) return 0;  // co-linear
+        return (val > 0) ? 1 : 2; // clock or counter-clock wise
+    }
+
+
+    /**
+     * A utility function to return square of distance
+     * between p1 and p2
+     */
+    static double distSq(MyPoint p1, MyPoint p2) {
+        return (p1.x - p2.x) * (p1.x - p2.x) +
+                (p1.y - p2.y) * (p1.y - p2.y);
+    }
+
+    private static class MyPoint implements Comparable<MyPoint> {
+        double x, y;
+        MyPoint rightMostLowestPoint;
+
+        MyPoint(double x, double y) {
+            this.x = x;
+            this.y = y;
+        }
+
+        public void setRightMostLowestPoint(MyPoint p) {
+            rightMostLowestPoint = p;
+        }
+
+        /**
+         * Implement it to compare this point with point o
+         * angularly along the x-axis with rightMostLowestPoint
+         * as the center, as shown in Figure 22.10b. By implementing
+         * the Comparable interface, you can use the Array.sort()
+         * method to sort the points to simplify coding.
+         */
+        @Override
+        public int compareTo(MyPoint o) {
+            // Find orientation
+            int orientation = orientation(rightMostLowestPoint, this, o);
+            if (orientation == 0) {
+                double distSqObj1 = distSq(rightMostLowestPoint, this);
+                double distSqObj2 = distSq(rightMostLowestPoint, o);
+                return Double.compare(distSqObj1, distSqObj2);
+            }
+            return (orientation == 2) ? 1 : -1;
+        }
+
+        @Override
+        public String toString() {
+            return "(" + x + ", " + y + ")";
+        }
+
+    }
+
+}
\ No newline at end of file