-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathgenerate.py
170 lines (141 loc) · 7.31 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import pathlib
import sys
import time
import fire
import librosa
import torch
from fastspeech.data_load import PadDataLoader
from fastspeech.dataset.text_dataset import TextDataset
from fastspeech.inferencer.fastspeech_inferencer import FastSpeechInferencer
from fastspeech.model.fastspeech import Fastspeech
from fastspeech import hparam as hp, DEFAULT_DEVICE
from fastspeech.utils.logging import tprint
from fastspeech.utils.time import TimeElapsed
from fastspeech.utils.pytorch import to_device_async, to_cpu_numpy
from fastspeech.infer import get_inferencer
from fastspeech.inferencer.waveglow_inferencer import WaveGlowInferencer
MAX_FILESIZE=128
# TODO test with different speeds
def generate(hparam='infer.yaml',
text='test_sentences.txt',
results_path='results',
device=DEFAULT_DEVICE,
**kwargs):
"""The script for generating waveforms from texts with a vocoder.
By default, this script assumes to load parameters in the default config file, fastspeech/hparams/infer.yaml.
Besides the flags, you can also set parameters in the config file via the command-line. For examples,
--checkpoint_path=CHECKPOINT_PATH
Path to checkpoint directory. The latest checkpoint will be loaded.
--waveglow_path=WAVEGLOW_PATH
Path to the WaveGlow checkpoint file.
--waveglow_engine_path=WAVEGLOW_ENGINE_PATH
Path to the WaveGlow engine file. It can be only used with --use_trt=True.
--batch_size=BATCH_SIZE
Batch size to use. Defaults to 1.
Refer to fastspeech/hparams/infer.yaml to see more parameters.
Args:
hparam (str, optional): Path to default config file. Defaults to "infer.yaml".
text (str, optional): a sample text or a text file path to generate its waveform. Defaults to 'test_sentences.txt'.
results_path (str, optional): Path to output waveforms directory. Defaults to 'results'.
device (str, optional): Device to use. Defaults to "cuda" if avaiable, or "cpu".
"""
hp.set_hparam(hparam, kwargs)
if os.path.isfile(text):
f = open(text, 'r', encoding="utf-8")
texts = f.read().splitlines()
else: # single string
texts = [text]
dataset = TextDataset(texts)
data_loader = PadDataLoader(dataset,
batch_size=hp.batch_size,
num_workers=hp.n_workers,
shuffle=False,
drop_last=False)
# text to mel
model = Fastspeech(
max_seq_len=hp.max_seq_len,
d_model=hp.d_model,
phoneme_side_n_layer=hp.phoneme_side_n_layer,
phoneme_side_head=hp.phoneme_side_head,
phoneme_side_conv1d_filter_size=hp.phoneme_side_conv1d_filter_size,
phoneme_side_output_size=hp.phoneme_side_output_size,
mel_side_n_layer=hp.mel_side_n_layer,
mel_side_head=hp.mel_side_head,
mel_side_conv1d_filter_size=hp.mel_side_conv1d_filter_size,
mel_side_output_size=hp.mel_side_output_size,
duration_predictor_filter_size=hp.duration_predictor_filter_size,
duration_predictor_kernel_size=hp.duration_predictor_kernel_size,
fft_conv1d_kernel=hp.fft_conv1d_kernel,
fft_conv1d_padding=hp.fft_conv1d_padding,
dropout=hp.dropout,
n_mels=hp.num_mels,
fused_layernorm=hp.fused_layernorm
)
fs_inferencer = get_inferencer(model, data_loader, device)
# set up WaveGlow
if hp.use_trt:
from fastspeech.trt.waveglow_trt_inferencer import WaveGlowTRTInferencer
wb_inferencer = WaveGlowTRTInferencer(
ckpt_file=hp.waveglow_path, engine_file=hp.waveglow_engine_path, use_fp16=hp.use_fp16)
else:
wb_inferencer = WaveGlowInferencer(
ckpt_file=hp.waveglow_path, device=device, use_fp16=hp.use_fp16)
tprint("Generating {} sentences.. ".format(len(dataset)))
with fs_inferencer, wb_inferencer:
try:
for i in range(len(data_loader)):
tprint("------------- BATCH # {} -------------".format(i))
with TimeElapsed(name="Inferece Time: E2E", format=":.6f"):
## Text-to-Mel ##
with TimeElapsed(name="Inferece Time: FastSpeech", device=device, cuda_sync=True, format=":.6f"), torch.no_grad():
outputs = fs_inferencer.infer()
texts = outputs["text"]
mels = outputs["mel"] # (b, n_mels, t)
mel_masks = outputs['mel_mask'] # (b, t)
# assert(mels.is_cuda)
# remove paddings
mel_lens = mel_masks.sum(axis=1)
max_len = mel_lens.max()
mels = mels[..., :max_len]
mel_masks = mel_masks[..., :max_len]
## Vocoder ##
with TimeElapsed(name="Inferece Time: WaveGlow", device=device, cuda_sync=True, format=":.6f"), torch.no_grad():
wavs = wb_inferencer.infer(mels)
wavs = to_cpu_numpy(wavs)
## Write wavs ##
pathlib.Path(results_path).mkdir(parents=True, exist_ok=True)
for i, (text, wav) in enumerate(zip(texts, wavs)):
tprint("TEXT #{}: \"{}\"".format(i, text))
# remove paddings in case of batch size > 1
wav_len = mel_lens[i] * hp.hop_len
wav = wav[:wav_len]
path = os.path.join(results_path, text[:MAX_FILESIZE] + ".wav")
librosa.output.write_wav(path, wav, hp.sr)
except StopIteration:
tprint("Generation has been done.")
except KeyboardInterrupt:
tprint("Generation has been canceled.")
if __name__ == '__main__':
fire.Fire(generate)