-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathfit.py
640 lines (534 loc) · 23.7 KB
/
fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
# Copyright 2017-2018 The Apache Software Foundation
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# -----------------------------------------------------------------------
#
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" train fit utility """
import logging
import math
import glob
import os
import random
import sys
import time
import re
from itertools import starmap
import signal
import pickle
import dllogger
import horovod.mxnet as hvd
import mxnet as mx
import mxnet.contrib.amp as amp
import numpy as np
from mxnet import autograd as ag
from mxnet import gluon
import data
from benchmarking import BenchmarkingDataIter
from global_metrics import CompositeMeter, MaxMeter, MinMeter, AvgMeter, PercentileMeter
class PartitionSignalHandler():
def __init__(self, sync_freq: int = 10):
self.step = 0
self.freq = sync_freq
self.t = mx.nd.array([0])
signal.signal(signal.SIGUSR1, self._signal_handler)
signal.signal(signal.SIGTERM, self._signal_handler)
def sync(self) -> bool:
if self.step % self.freq == 0:
new_sync = hvd.allreduce(self.t, average=False)
if new_sync[0] > 0:
self.t[0] = 1
self.step += 1
return self.should_end()
def should_end(self) -> bool:
return bool(self.t[0] > 0)
def _signal_handler(self, signum, frame):
print("Signal received")
self.t[0] = 1
def add_fit_args(parser):
def int_list(x):
return list(map(int, x.split(',')))
def float_list(x):
return list(map(float, x.split(',')))
train = parser.add_argument_group('Training')
train.add_argument('--mode', default='train_val', choices=('train_val', 'train', 'val', 'pred'),
help='mode')
train.add_argument('--seed', type=int, default=None,
help='random seed')
train.add_argument('--gpus', type=int_list, default=[0],
help='list of gpus to run, e.g. 0 or 0,2,5')
train.add_argument('--kv-store', type=str, default='device', choices=('device', 'horovod'),
help='key-value store type')
train.add_argument('--dtype', type=str, default='float16', choices=('float32', 'float16'),
help='precision')
train.add_argument('--amp', action='store_true',
help='If enabled, turn on AMP (Automatic Mixed Precision)')
train.add_argument('--batch-size', type=int, default=192,
help='the batch size')
train.add_argument('--num-epochs', type=int, default=90,
help='number of epochs')
train.add_argument('--run-epochs', type=int, default=-1,
help='number of epochs to run in single run')
train.add_argument('--lr', type=float, default=0.1,
help='initial learning rate')
train.add_argument('--lr-schedule', choices=('multistep', 'cosine'), default='cosine',
help='learning rate schedule')
train.add_argument('--lr-factor', type=float, default=0.256,
help='the ratio to reduce lr on each step')
train.add_argument('--lr-steps', type=float_list, default=[],
help='the epochs to reduce the lr, e.g. 30,60')
train.add_argument('--warmup-epochs', type=int, default=5,
help='the epochs to ramp-up lr to scaled large-batch value')
train.add_argument('--optimizer', type=str, default='sgd',
help='the optimizer type')
train.add_argument('--mom', type=float, default=0.875,
help='momentum for sgd')
train.add_argument('--wd', type=float, default=1 / 32768,
help='weight decay for sgd')
train.add_argument('--label-smoothing', type=float, default=0.1,
help='label smoothing factor')
train.add_argument('--mixup', type=float, default=0,
help='alpha parameter for mixup (if 0 then mixup is not applied)')
train.add_argument('--disp-batches', type=int, default=20,
help='show progress for every n batches')
train.add_argument('--model-prefix', type=str, default='model',
help='model checkpoint prefix')
train.add_argument('--save-frequency', type=int, default=-1,
help='frequency of saving model in epochs (--model-prefix must be specified). '
'If -1 then save only best model. If 0 then do not save anything.')
train.add_argument('--begin-epoch', type=int, default=0,
help='start the model from an epoch')
train.add_argument('--load', help='checkpoint to load')
train.add_argument('--test-io', action='store_true',
help='test reading speed without training')
train.add_argument('--test-io-mode', default='train', choices=('train', 'val'),
help='data to test')
train.add_argument('--log', type=str, default='log.log',
help='file where to save the log from the experiment')
train.add_argument('--dllogger-log', type=str, default='dllogger_log.log',
help='file where to save the dllogger log from the experiment')
train.add_argument('--workspace', type=str, default='./',
help='path to directory where results will be stored')
train.add_argument('--logdir', type=str, default=None,
help="path to directory where logs will be stored")
train.add_argument('--no-metrics', action='store_true',
help='do not calculate evaluation metrics (for benchmarking)')
train.add_argument('--benchmark-iters', type=int, default=None,
help='run only benchmark-iters iterations from each epoch')
return train
def get_epoch_size(args, kv):
return math.ceil(args.num_examples / args.batch_size)
def get_lr_scheduler(args):
def multistep_schedule(x):
lr = args.lr * \
(args.lr_factor ** (len(list(filter(lambda step: step <= x, args.lr_steps)))))
warmup_coeff = min(1, x / args.warmup_epochs)
return warmup_coeff * lr
def cosine_schedule(x):
steps = args.lr_steps
if not steps or steps[0] > args.warmup_epochs:
steps = [args.warmup_epochs] + steps
elif not steps or steps[0] != 0:
steps = [0] + steps
if steps[-1] != args.num_epochs:
steps.append(args.num_epochs)
if x < args.warmup_epochs:
return args.lr * x / args.warmup_epochs
for i, (step, next_step) in enumerate(zip(steps, steps[1:])):
if next_step > x:
return args.lr * 0.5 * (1 + math.cos(math.pi * (x - step) / (next_step - step))) * (args.lr_factor ** i)
return 0
schedules = {
'multistep': multistep_schedule,
'cosine': cosine_schedule,
}
return schedules[args.lr_schedule]
def load_model(args, model):
file = list(glob.glob(
f"{args.workspace}/{args.model_prefix}_*.params"))
if len(file) == 0:
return -1
file = [x for x in sorted(file) if "best.params" not in x]
if len(file) == 0:
return -1
file = file[-1]
epoch = re.match(f".*{args.model_prefix}_([0-9]*)\.params", file)
if epoch is None:
return -1
epoch = int(epoch.group(1))
model.load_parameters(file)
logging.info('Loaded model {}'.format(file))
return epoch
def save_checkpoint(net, epoch, top1, best_acc, model_prefix, workspace, save_frequency, kvstore, force_save=False):
if model_prefix is None or save_frequency == 0 or ('horovod' in kvstore and hvd.rank() != 0):
return
if (save_frequency > 0 and (epoch + 1) % save_frequency == 0) or force_save:
fname = '{}_{:04}.params'.format(model_prefix, epoch)
fname = os.path.join(workspace, fname)
net.save_parameters(fname)
logging.info('[Epoch {}] Saving checkpoint to {} with Accuracy: {:.4f}'.format(
epoch, fname, top1))
if top1 > best_acc:
fname = os.path.join(workspace, f'{model_prefix}_best.params')
net.save_parameters(fname)
logging.info('[Epoch {}] Saving checkpoint to {} with Accuracy: {:.4f}'.format(
epoch, fname, top1))
def model_pred(args, model, image):
from imagenet_classes import classes
output = model(image.reshape(-1, *image.shape)
)[0].softmax().as_in_context(mx.cpu())
top = output.argsort(is_ascend=False)[:10]
for i, ind in enumerate(top):
ind = int(ind.asscalar())
logging.info('{:2d}. {:5.2f}% -> {}'.format(i + 1,
output[ind].asscalar() * 100, classes[ind]))
def reduce_metrics(args, metrics, kvstore):
if 'horovod' not in kvstore or not metrics[0] or hvd.size() == 1:
return metrics
m = mx.ndarray.array(metrics[1], ctx=mx.gpu(args.gpus[0]))
reduced = hvd.allreduce(m)
values = reduced.as_in_context(mx.cpu()).asnumpy().tolist()
return (metrics[0], values)
def model_score(args, net, val_data, metric, kvstore):
if val_data is None:
logging.info('Omitting validation: no data')
return [], []
if not isinstance(metric, mx.metric.EvalMetric):
metric = mx.metric.create(metric)
metric.reset()
val_data.reset()
total_batch_size = val_data.batch_size * val_data._num_gpus * \
(hvd.size() if 'horovod' in kvstore else 1)
durations = []
tic = time.time()
outputs = []
for batches in val_data:
# synchronize to previous iteration
for o in outputs:
o.wait_to_read()
data = [b.data[0] for b in batches]
label = [b.label[0][:len(b.data[0]) - b.pad]
for b in batches if len(b.data[0]) != b.pad]
outputs = [net(X) for X, b in zip(data, batches)]
outputs = [o[:len(b.data[0]) - b.pad]
for o, b in zip(outputs, batches) if len(b.data[0]) != b.pad]
metric.update(label, outputs)
durations.append(time.time() - tic)
tic = time.time()
metric = reduce_metrics(args, metric.get_global(), kvstore)
durations = durations[min(len(durations) // 10, 100):]
duration_stats = {
'ips': total_batch_size / np.mean(durations),
'latency_avg': np.mean(durations),
}
return metric, duration_stats, durations
class ScalarMetric(mx.metric.Loss):
def update(self, _, scalar):
self.sum_metric += scalar
self.global_sum_metric += scalar
self.num_inst += 1
self.global_num_inst += 1
def label_smoothing(labels, classes, eta):
return labels.one_hot(classes, on_value=1 - eta + eta / classes, off_value=eta / classes)
def model_fit(args, net, train_data, eval_metric, optimizer,
optimizer_params, lr_scheduler, eval_data, global_metrics, kvstore, kv,
begin_epoch, num_epoch, run_epoch, model_prefix):
if not isinstance(eval_metric, mx.metric.EvalMetric):
eval_metric = mx.metric.create(eval_metric)
loss_metric = ScalarMetric()
if 'horovod' in kvstore:
trainer = hvd.DistributedTrainer(
net.collect_params(), optimizer, optimizer_params)
else:
trainer = gluon.Trainer(net.collect_params(), optimizer, optimizer_params,
kvstore=kv, update_on_kvstore=False)
if args.amp:
amp.init_trainer(trainer)
partition_handler = PartitionSignalHandler(1)
sparse_label_loss = (args.label_smoothing == 0 and args.mixup == 0)
loss = gluon.loss.SoftmaxCrossEntropyLoss(sparse_label=sparse_label_loss)
loss.hybridize(static_shape=True, static_alloc=True)
local_batch_size = train_data.batch_size
total_batch_size = local_batch_size * train_data._num_gpus * \
(hvd.size() if 'horovod' in kvstore else 1)
durations = []
epoch_size = get_epoch_size(args, kv)
run_epoch = num_epoch if (run_epoch == -1) else (begin_epoch + run_epoch)
def transform_data(images, labels):
if args.mixup != 0:
coeffs = mx.nd.array(np.random.beta(args.mixup, args.mixup, size=images.shape[0])).as_in_context(
images.context)
image_coeffs = coeffs.astype(
images.dtype, copy=False).reshape(*coeffs.shape, 1, 1, 1)
ret_images = image_coeffs * images + \
(1 - image_coeffs) * images[::-1]
ret_labels = label_smoothing(
labels, args.num_classes, args.label_smoothing)
label_coeffs = coeffs.reshape(*coeffs.shape, 1)
ret_labels = label_coeffs * ret_labels + \
(1 - label_coeffs) * ret_labels[::-1]
else:
ret_images = images
if not sparse_label_loss:
ret_labels = label_smoothing(
labels, args.num_classes, args.label_smoothing)
else:
ret_labels = labels
return ret_images, ret_labels
i = -1
best_accuracy = -1
for epoch in range(begin_epoch, min(run_epoch, num_epoch)):
tic = time.time()
btic = time.time()
etic = time.time()
train_data.reset()
eval_metric.reset()
loss_metric.reset()
logging.info('Starting epoch {}'.format(epoch))
outputs = []
if not partition_handler.should_end():
for i, batches in enumerate(train_data):
# synchronize to previous iteration
# for o in outputs:
# o.wait_to_read()
trainer.set_learning_rate(lr_scheduler(epoch + i / epoch_size))
data = [b.data[0] for b in batches]
label = [b.label[0].as_in_context(
b.data[0].context) for b in batches]
orig_label = label
data, label = zip(*starmap(transform_data, zip(data, label)))
outputs = []
Ls = []
with ag.record():
for x, y in zip(data, label):
z = net(x)
L = loss(z, y)
# store the loss and do backward after we have done forward
# on all GPUs for better speed on multiple GPUs.
Ls.append(L)
outputs.append(z)
if args.amp:
with amp.scale_loss(Ls, trainer) as scaled_loss:
ag.backward(scaled_loss)
else:
ag.backward(Ls)
if 'horovod' in kvstore:
trainer.step(local_batch_size)
else:
trainer.step(total_batch_size)
loss_metric.update(..., np.mean(
[l.asnumpy() for l in Ls]).item())
if args.disp_batches and not (i + 1) % args.disp_batches:
dllogger_it_data = {
'train.loss': loss_metric.get()[1],
'train.ips': args.disp_batches * total_batch_size / (time.time() - btic),
'train.lr': trainer.learning_rate
}
dllogger.log((epoch, i), data=dllogger_it_data)
loss_metric.reset_local()
btic = time.time()
durations.append(time.time() - tic)
tic = time.time()
else:
break
durations = durations[min(len(durations) // 10, 100):]
dllogger_epoch_data = {
'train.loss': loss_metric.get_global()[1],
'train.ips': total_batch_size / np.mean(durations)
}
should_break = partition_handler.sync()
if args.mode == 'train_val':
logging.info('Validating epoch {}'.format(epoch))
score, duration_stats, _ = model_score(
args, net, eval_data, eval_metric, kvstore)
dllogger_epoch_data.update(
starmap(lambda key, val: (
'val.{}'.format(key), val), zip(*score))
)
dllogger_epoch_data.update(
starmap(lambda key, val: ('val.{}'.format(key), val),
duration_stats.items())
)
score = dict(zip(*score))
accuracy = score.get('accuracy', -1)
save_checkpoint(net, epoch, accuracy, best_accuracy,
model_prefix, args.workspace,
args.save_frequency if args.mode == "train_val" else -1,
kvstore, force_save=should_break)
best_accuracy = max(best_accuracy, accuracy)
global_metrics.update_dict(dllogger_epoch_data)
dllogger.log(step=(epoch,), data=dllogger_epoch_data)
def fit(args, model, data_loader):
"""
train a model
args : argparse returns
model : the the neural network model
data_loader : function that returns the train and val data iterators
"""
start_time = time.time()
# select gpu for horovod process
if 'horovod' in args.kv_store:
args.gpus = [args.gpus[hvd.local_rank()]]
if args.amp:
amp.init()
if args.seed is not None:
logging.info('Setting seeds to {}'.format(args.seed))
random.seed(args.seed)
np.random.seed(args.seed)
mx.random.seed(args.seed)
# kvstore
if 'horovod' in args.kv_store:
kv = None
rank = hvd.rank()
num_workers = hvd.size()
else:
kv = mx.kvstore.create(args.kv_store)
rank = kv.rank
num_workers = kv.num_workers
if args.test_io:
train, val = data_loader(args, kv)
if args.test_io_mode == 'train':
data_iter = train
else:
data_iter = val
tic = time.time()
for i, batch in enumerate(data_iter):
if isinstance(batch, list):
for b in batch:
for j in b.data:
j.wait_to_read()
else:
for j in batch.data:
j.wait_to_read()
if (i + 1) % args.disp_batches == 0:
logging.info('Batch [{}]\tSpeed: {:.2f} samples/sec'.format(
i, args.disp_batches * args.batch_size / (time.time() - tic)))
tic = time.time()
return
start_epoch = load_model(args, model) + 1
if start_epoch == 0:
# all initializers should be specified in the model definition.
# if not, this will raise an error
model.initialize(mx.init.Initializer())
logging.info(f"starting epoch {start_epoch}")
# devices for training
devs = list(map(mx.gpu, args.gpus))
model.collect_params().reset_ctx(devs)
if args.mode == 'pred':
logging.info('Infering image {}'.format(args.data_pred))
model_pred(args, model, data.load_image(args, args.data_pred, devs[0]))
return
# learning rate
lr_scheduler = get_lr_scheduler(args)
optimizer_params = {
'learning_rate': 0,
'wd': args.wd,
'multi_precision': True,
}
# Only a limited number of optimizers have 'momentum' property
has_momentum = {'sgd', 'dcasgd', 'nag', 'signum', 'lbsgd'}
if args.optimizer in has_momentum:
optimizer_params['momentum'] = args.mom
# evaluation metrices
if not args.no_metrics:
eval_metrics = ['accuracy']
eval_metrics.append(mx.metric.create(
'top_k_accuracy', top_k=5))
else:
eval_metrics = []
train, val = data_loader(args, kv)
train = BenchmarkingDataIter(train, args.benchmark_iters)
if val is not None:
val = BenchmarkingDataIter(val, args.benchmark_iters)
if 'horovod' in args.kv_store:
# Fetch and broadcast parameters
params = model.collect_params()
if params is not None:
hvd.broadcast_parameters(params, root_rank=0)
ctx = mx.gpu(hvd.local_rank())
tensor1 = mx.nd.zeros(shape=(1,), dtype='float32', ctx=ctx)
tensor2 = mx.nd.zeros(shape=(1,), dtype='float32', ctx=ctx)
tensor1, tensor2 = hvd.grouped_allreduce([tensor1,tensor2])
global_metrics = CompositeMeter()
if args.mode in ['train_val', 'train']:
global_metrics.register_metric('train.loss', MinMeter())
global_metrics.register_metric('train.ips', AvgMeter())
if args.mode in ['train_val', 'val']:
global_metrics.register_metric('val.accuracy', MaxMeter())
global_metrics.register_metric('val.top_k_accuracy_5', MaxMeter())
global_metrics.register_metric('val.ips', AvgMeter())
global_metrics.register_metric('val.latency_avg', AvgMeter())
if args.mode in ['val']:
global_metrics.register_metric('val.latency_50', PercentileMeter(50))
global_metrics.register_metric('val.latency_90', PercentileMeter(90))
global_metrics.register_metric('val.latency_95', PercentileMeter(95))
global_metrics.register_metric('val.latency_99', PercentileMeter(99))
global_metrics.register_metric('val.latency_100', PercentileMeter(100))
# run
if args.mode in ['train_val', 'train']:
model_fit(
args,
model,
train,
begin_epoch=start_epoch,
num_epoch=args.num_epochs,
run_epoch=args.run_epochs,
eval_data=val,
eval_metric=eval_metrics,
global_metrics=global_metrics,
kvstore=args.kv_store,
kv=kv,
optimizer=args.optimizer,
optimizer_params=optimizer_params,
lr_scheduler=lr_scheduler,
model_prefix=args.model_prefix,
)
elif args.mode == 'val':
for epoch in range(args.num_epochs): # loop for benchmarking
score, duration_stats, durations = model_score(
args, model, val, eval_metrics, args.kv_store)
dllogger_data = dict(starmap(lambda key, val: (
'val.{}'.format(key), val), zip(*score)))
dllogger_data.update(
starmap(lambda key, val: ('val.{}'.format(key), val),
duration_stats.items())
)
global_metrics.update_dict(dllogger_data)
for percentile in [50, 90, 95, 99, 100]:
metric_name = 'val.latency_{}'.format(percentile)
dllogger_data[metric_name] = np.percentile(
durations, percentile)
global_metrics.update_metric(metric_name, durations)
dllogger.log(step=(epoch,), data=dllogger_data)
else:
raise ValueError('Wrong mode')
mx.nd.waitall()
dllogger.log(tuple(), data=global_metrics.get())