-
Notifications
You must be signed in to change notification settings - Fork 193
/
Copy pathgenerating_metainfo.py
191 lines (153 loc) · 5.51 KB
/
generating_metainfo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from argparse import ArgumentParser
from pathlib import Path
import mne
import numpy as np
import pandas as pd
import moabb
from moabb.datasets.utils import dataset_search
from moabb.utils import set_download_dir
columns_name = [
"Dataset",
"#Subj",
"#Chan",
"#Classes",
"trials/events",
"Window Size (s)",
"Freq (Hz)",
"#Session",
"#Runs",
"Total_trials",
]
def parser_init():
parser = ArgumentParser(description="Getting the meta-information script for MOABB")
parser.add_argument(
"-mne_p",
"--mne_data",
dest="mne_data",
default=Path.home() / "mne_data",
type=Path,
help="Folder where to save and load the datasets with mne structure.",
)
return parser
def process_trial_freq(trials_per_events, prdgm):
"""Function to process the trial frequency. Getting the median value if the
paradigm is MotorImagery.
Parameters
----------
trials_per_events: dict
prdgm: str
Returns
-------
trial_freq: str
"""
class_per_trial = list(trials_per_events.values())
if prdgm == "imagery" or prdgm == "ssvep":
return f"{int(np.median(class_per_trial))}"
elif prdgm == "p300":
not_target = max(trials_per_events.values())
target = min(trials_per_events.values())
return f"NT{not_target} / T {target}"
def get_meta_info(dataset, dataset_name, paradigm, prdgm_name):
"""Function to get the meta-information of a dataset.
Parameters
----------
dataset: BaseDataset
Dataset object
dataset_name: str
Dataset name
paradigm: BaseParadigm
Paradigm object to process the dataset
prdgm_name: str
Paradigm name
Returns
-------
"""
subjects = len(dataset.subject_list)
session = dataset.n_sessions
X, _, metadata = paradigm.get_data(dataset, [1], return_epochs=True)
sfreq = int(X.info["sfreq"])
nchan = X.info["nchan"]
runs = len(metadata["run"].unique())
classes = len(X.event_id)
epoch_size = X.tmax - X.tmin
trials_per_events = mne.count_events(X.events)
total_trials = int(sum(trials_per_events.values()))
trial_class = process_trial_freq(trials_per_events, prdgm_name)
info_dataset = pd.Series(
[
dataset_name,
subjects,
nchan,
classes,
trial_class,
epoch_size,
sfreq,
session,
runs,
session * runs * total_trials * subjects,
],
index=columns_name,
)
return info_dataset
if __name__ == "__main__":
mne.set_log_level(False)
parser = parser_init()
options = parser.parse_args()
mne_path = Path(options.mne_data)
set_download_dir(mne_path)
paradigms = {}
paradigms["imagery"] = moabb.paradigms.MotorImagery()
paradigms["ssvep"] = moabb.paradigms.SSVEP()
paradigms["p300"] = moabb.paradigms.P300()
for prdgm_name, paradigm in paradigms.items():
dataset_list = dataset_search(paradigm=prdgm_name)
metainfo = []
for dataset in dataset_list:
dataset_name = str(dataset).split(".")[-1].split(" ")[0]
dataset_path = f"{mne_path.parent}/metainfo/metainfo_{dataset_name}.csv"
if not dataset_path.exists():
print(
"Trying to get the meta information from the "
f"dataset {dataset} with {prdgm_name}"
)
try:
info_dataset = get_meta_info(
dataset, dataset_name, paradigm, prdgm_name
)
print(
"Saving the meta information for the dataset in the file: ",
dataset_path,
)
info_dataset.to_csv(dataset_path)
metainfo.append(info_dataset)
except Exception as ex:
print(f"Error with {dataset} with {prdgm_name} paradigm", end=" ")
print(f"Error: {ex}")
if prdgm_name == "imagery":
print("Trying with the LeftRightImagery paradigm")
prdgm2 = moabb.paradigms.LeftRightImagery()
try:
info_dataset = get_meta_info(
dataset, dataset_name, prdgm2, prdgm_name
)
print(
"Saving the meta information for the dataset in the file: ",
dataset_path,
)
info_dataset.to_csv(dataset_path)
metainfo.append(info_dataset)
except Exception as ex:
print(
f"Error with {dataset} with {prdgm_name} paradigm",
end=" ",
)
print(f"Error: {ex}")
else:
print(f"Loading the meta information from {dataset_path}")
info_dataset = pd.read_csv(dataset_path)
metainfo.append(info_dataset)
paradigm_df = pd.concat(metainfo, axis=1).T
paradigm_df.columns = columns_name
dataset_path = mne_path.parent / "metainfo" / f"metainfo_{dataset_name}.csv"
print(f"Saving the meta information for the paradigm {dataset_path}")
paradigm_df.to_csv(dataset_path, index=None)