-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathflags.h
executable file
·205 lines (195 loc) · 7.56 KB
/
flags.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <unordered_map>
#include "gflags/gflags.h"
#include "fastdeploy/benchmark/utils.h"
#include <sys/types.h>
#include <dirent.h>
#include <cstring>
#ifdef WIN32
static const char sep = '\\';
#else
static const char sep = '/';
#endif
DEFINE_string(model, "",
"Required, directory of the inference model."
"This dir should contains files like: "
"inference.pdmodel, inference.pdiparams, "
"inference.yml etc.");
DEFINE_string(image, "",
"Required, path of the image file.");
DEFINE_string(config_path, "config.txt",
"Required, path of benchmark config.");
DEFINE_int32(warmup, -1,
"Optional, number of warmup for profiling, default -1."
"will force to override the value in config file.");
DEFINE_int32(repeat, -1,
"Optional, number of repeats for profiling, default -1."
"will force to override the value in config file.");
DEFINE_int32(xpu_l3_cache, -1,
"Optional, size xpu l3 cache for profiling, default -1."
"will force to override the value in config file ");
DEFINE_bool(use_fp16, false,
"Optional, whether to use fp16, default false."
"will force to override fp16 option in config file.");
DEFINE_string(model_file, "UNKNOWN",
"Optional, set specific model file, default 'UNKNOWN'"
"eg, model.pdmodel, model.onnx, Only support for pure runtime "
"benchmark bin without pre/post processes.");
DEFINE_string(params_file, "",
"Optional, set specific params file, default ''"
"eg, model.pdiparams. Only support for pure runtime "
"benchmark bin without pre/post processes.");
DEFINE_int32(device_id, -1,
"Optional, set specific device id for GPU/XPU, default -1."
"will force to override the value in config file "
"eg, 0/1/2/...");
DEFINE_bool(enable_log_info, false,
"Optional, whether to enable log info for paddle backend,"
"default false.");
DEFINE_int32(max_workspace_size, -1,
"Optional, set max workspace size for tensorrt, default -1."
"will force to override the value in config file "
"eg, 2147483647(2GB)");
static void PrintUsage() {
std::cout << "Usage: infer_demo --model model_path --image img_path "
"--config_path config.txt[Path of benchmark config.] "
<< std::endl;
std::cout << "Default value of device: cpu" << std::endl;
std::cout << "Default value of backend: default" << std::endl;
std::cout << "Default value of use_fp16: false" << std::endl;
}
static void PrintBenchmarkInfo(std::unordered_map<std::string,
std::string> config_info) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Get model name
std::vector<std::string> model_names;
fastdeploy::benchmark::Split(FLAGS_model, model_names, sep);
if (model_names.empty()) {
if (FLAGS_model_file != "UNKNOWN") {
model_names.push_back(FLAGS_model_file);
} else {
std::cout << "[WARNING] Directory of the inference model is empty!!!"
<< std::endl;
}
}
// Save benchmark info
int warmup = std::stoi(config_info["warmup"]);
int repeat = std::stoi(config_info["repeat"]);
std::stringstream ss;
ss.precision(3);
ss << "\n======= Model Info =======\n";
if (!model_names.empty()) {
ss << "model_name: " << model_names[model_names.size() - 1] << std::endl;
}
ss << "profile_mode: " << config_info["profile_mode"] << std::endl;
if (config_info["profile_mode"] == "runtime") {
ss << "include_h2d_d2h: " << config_info["include_h2d_d2h"] << std::endl;
}
ss << "\n======= Backend Info =======\n";
ss << "warmup: " << warmup << std::endl;
ss << "repeats: " << repeat << std::endl;
ss << "device: " << config_info["device"] << std::endl;
if (config_info["device"] == "gpu") {
ss << "device_id: " << config_info["device_id"] << std::endl;
}
ss << "use_fp16: " << config_info["use_fp16"] << std::endl;
ss << "backend: " << config_info["backend"] << std::endl;
if (config_info["device"] == "cpu") {
ss << "cpu_thread_nums: " << config_info["cpu_thread_nums"] << std::endl;
}
ss << "collect_memory_info: "
<< config_info["collect_memory_info"] << std::endl;
if (config_info["collect_memory_info"] == "true") {
ss << "sampling_interval: " << config_info["sampling_interval"]
<< "ms" << std::endl;
}
std::cout << ss.str() << std::endl;
// Save benchmark info
fastdeploy::benchmark::ResultManager::SaveBenchmarkResult(ss.str(),
config_info["result_path"]);
#endif
return;
}
static bool GetModelResoucesNameFromDir(
const std::string& path, std::string* resource_name,
const std::string& suffix = "pdmodel") {
DIR *p_dir;
struct dirent *ptr;
if (!(p_dir = opendir(path.c_str()))) {
return false;
}
bool find = false;
while ((ptr = readdir(p_dir)) != 0) {
if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
std::string tmp_file_name = ptr->d_name;
if (tmp_file_name.find(suffix) != std::string::npos) {
if (suffix == "pdiparams") {
if (tmp_file_name.find("info") == std::string::npos) {
find = true;
*resource_name = tmp_file_name;
break;
}
} else {
find = true;
*resource_name = tmp_file_name;
break;
}
} else {
if (suffix == "yml") {
if (tmp_file_name.find("yaml") != std::string::npos) {
find = true;
*resource_name = tmp_file_name;
break;
}
} else if (suffix == "yaml") {
if (tmp_file_name.find("yml") != std::string::npos) {
find = true;
*resource_name = tmp_file_name;
break;
}
}
}
}
}
closedir(p_dir);
return find;
}
static bool UpdateModelResourceName(
std::string* model_name, std::string* params_name,
std::string* config_name, fastdeploy::ModelFormat* model_format,
std::unordered_map<std::string, std::string>& config_info,
bool use_config_file = true, bool use_quant_model = false) {
*model_format = fastdeploy::ModelFormat::PADDLE;
if (!(GetModelResoucesNameFromDir(FLAGS_model, model_name, "pdmodel")
&& GetModelResoucesNameFromDir(FLAGS_model, params_name, "pdiparams"))) {
std::cout << "Can not find Paddle model resources." << std::endl;
return false;
}
if (use_config_file) {
if (!GetModelResoucesNameFromDir(FLAGS_model, config_name, "yml")) {
std::cout << "Can not find config yaml resources." << std::endl;
return false;
}
}
if (config_info["backend"] == "sophgo") {
*model_format = fastdeploy::ModelFormat::SOPHGO;
if (!GetModelResoucesNameFromDir(FLAGS_model, model_name, "bmodel")) {
std::cout << "Can not find sophgo model resources." << std::endl;
return false;
}
}
return true;
}