-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathtest_yolov3.py
executable file
·69 lines (58 loc) · 2.71 KB
/
test_yolov3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import pickle
import numpy as np
import runtime_config as rc
def test_detection_yolov3():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov3_darknet53_270e_coco.tgz"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
result_url = "https://bj.bcebos.com/fastdeploy/tests/data/yolov3_baseline.pkl"
fd.download_and_decompress(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url, "resources")
model_path = "resources/yolov3_darknet53_270e_coco"
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "infer_cfg.yml")
rc.test_option.use_ort_backend()
model = fd.vision.detection.YOLOv3(
model_file, params_file, config_file, runtime_option=rc.test_option)
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(2):
result = model.predict(im1)
with open("resources/yolov3_baseline.pkl", "rb") as f:
boxes, scores, label_ids = pickle.load(f)
pred_boxes = np.array(result.boxes)
pred_scores = np.array(result.scores)
pred_label_ids = np.array(result.label_ids)
diff_boxes = np.fabs(boxes - pred_boxes)
diff_scores = np.fabs(scores - pred_scores)
diff_label_ids = np.fabs(label_ids - pred_label_ids)
print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
score_threshold = 0.1
assert diff_boxes[scores > score_threshold].max(
) < 1e-04, "There's diff in boxes."
assert diff_scores[scores > score_threshold].max(
) < 1e-04, "There's diff in scores."
assert diff_label_ids[scores > score_threshold].max(
) < 1e-04, "There's diff in label_ids."
# result = model.predict(im1)
# with open("yolov3_baseline.pkl", "wb") as f:
# pickle.dump([np.array(result.boxes), np.array(result.scores), np.array(result.label_ids)], f)
if __name__ == "__main__":
test_detection_yolov3()