-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmoveRotate.cpp
508 lines (438 loc) · 17.7 KB
/
moveRotate.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/*
// Rotate vapoursynth plugin
// This file contains a rotate
// filter. It rotates the given window of the frame around given axial coordinates
// through specified angle
// Lanczos, bicubic, bilinear interpolation or near point approximation is an option..
// 20 Aug 2020
// Copyright (C) <2006, 2020> <V.C.Mohan>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 3 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
A copy of the GNU General Public License is at
http://www.gnu.org/licenses/.
Author V.C.Mohan
Oct 2014, july 2020
*/
/*
#include <stdlib.h>
#include "math.h"
#include "VapourSynth.h"
#include "VSHelper.h"
#include "interpolationMethods.h"
*/
typedef struct {
VSNodeRef *node[2];
const VSVideoInfo *vi[2];
float dd; // initial angle of rotation
float dinc;
int lx, wd, ty, ht; // coordinates of rectangle to be rotated
int axx, axy; // axis coordinates around which frame window rotates
int pquant; // quantile precision
int intq; // 0 nearest point, 1 bilinear 2 Cubic 4x4 pts 3, lanczos 6x6
int span; // 6 x6 Lanczos, or 4x4 cubic or 2x2 linear interpolation or 0 for nearest neighbour
float * lbuf;
} RotateData;
//--------------------------------------------------------------------------------------------------------
// This function is called immediately after vsapi->createFilter(). This is the only place where the video
// properties may be set. In this case we simply use the same as the input clip. You may pass an array
// of VSVideoInfo if the filter has more than one output, like rgb+alpha as two separate clips.
static void VS_CC rotateInit(VSMap *in, VSMap *out, void **instanceData,
VSNode *node, VSCore *core, const VSAPI *vsapi)
{
RotateData *d = (RotateData *) * instanceData;
vsapi->setVideoInfo(d->vi[0], 1, node);
// set up all flags
d->lbuf = NULL;
d->pquant = 32;
if ( d->intq == 3 )
{
d->span = 6;
//lanczos opted 6 X 6 points per interpolation
d->lbuf = (float*) vs_aligned_malloc<float> ((d->pquant + 1) * d->span * sizeof(float), 32);
LanczosCoeff( d->lbuf, d->span, d->pquant);
}
else if ( d->intq == 2 )
{
d->span = 4;
//cubic 4 X 4 opted or needed ht lanczos when we have only
//4 points available for interpolating a value
d->lbuf = (float*)vs_aligned_malloc<float>((d->pquant + 1) * d->span * sizeof(float), 32);
CubicIntCoeff( d->lbuf, d->pquant);
}
else if( d->intq == 1)
{
d->span = 2;
d->lbuf = (float*)vs_aligned_malloc<float>((d->pquant + 1) * d->span * sizeof(float), 32);
LinearIntCoeff( d->lbuf, d->pquant);
}
else
{
d->span = 0;
d->lbuf = NULL;
}
}
// This is the main function that gets called when a frame should be produced. It will, in most cases, get
// called several times to produce one frame. This state is being kept track of ht the value of
// activationReason. The first call to produce a certain frame n is always arInitial. In this state
// you should request all the input frames you need. Always do it in ascending order to play nice with the
// upstream filters.
// Once all frames are ready, the filter will be called with arAllFramesReady. It is now time to
// do the actual processing.
static const VSFrameRef *VS_CC rotateGetFrame(int n, int activationReason, void **instanceData, void **frameData, VSFrameContext *frameCtx, VSCore *core, const VSAPI *vsapi) {
RotateData *d = (RotateData *) * instanceData;
if (activationReason == arInitial)
{
// Request the source frame on the first call
vsapi->requestFrameFilter(n, d->node[0], frameCtx);
vsapi->requestFrameFilter(n, d->node[1], frameCtx);
}
else if (activationReason == arAllFramesReady)
{
const VSFrameRef *src = vsapi->getFrameFilter(n, d->node[0], frameCtx);
// The reason we query this on a per frame basis is because we want our filter
// to accept clips with varying dimensions. If we reject such content using d->vi
// would be better.
const VSFormat *fi = d->vi[0]->format;
int height = vsapi->getFrameHeight(src, 0);
int width = vsapi->getFrameWidth(src, 0);
const VSFrameRef *bkg = vsapi->getFrameFilter(n, d->node[1], frameCtx);
// When creating a new frame for output it is VERY EXTREMELY SUPER IMPORTANT to
// supply the "dominant" source frame to copy properties from. Frame props
// are an essential part of the filter chain and you should NEVER break it.
VSFrameRef *dst = vsapi->copyFrame(bkg, core);
int subW[] = { 0, fi->subSamplingW, fi->subSamplingW, 0 };
int subH[] = { 0, fi->subSamplingH, fi->subSamplingH, 0 };
uint8_t * dstp[] = { NULL, NULL, NULL, NULL };
const uint8_t * srcp[] = { NULL, NULL, NULL, NULL };
const uint8_t * bkgp[] = { NULL, NULL, NULL, NULL };
int nbits = fi->bitsPerSample;
int nbytes = fi->bytesPerSample;
for (int plane = 0; plane < fi->numPlanes; plane++)
{
srcp[plane] = vsapi->getReadPtr(src, plane);
int bpitch = vsapi->getStride(bkg, plane);
dstp[plane] = vsapi->getWritePtr(dst, plane);
int ht = vsapi->getFrameHeight(bkg, plane);
int wd = vsapi->getFrameWidth(bkg, plane);
bkgp[plane] = vsapi->getReadPtr(bkg, plane);
}
// compute rotational coordinates for the current frame
float dd = d->dd + n * d->dinc;
if (dd > 0)
{
while ( dd >= 360 )
{
dd = dd - 360;
}
}
else
{
while ( dd < 0 )
{
dd = dd + 360;
}
}
float sinalfa = sin( (dd * M_PI ) / 180);
float cosalfa = cos( (dd * M_PI ) / 180);
for ( int h = d->ty; h < d->ty + d->ht; h ++)
{
float hsinalfa = ( h - d->axy) * sinalfa;
float hcosalfa = ( h - d->axy) * cosalfa;
for( int w = d->lx; w < d->lx + d->wd; w ++)
{
// h & w are coordinates after rotation. get their coordinates prior to rotation.
float newx = d->axx + ( w - d->axx) * cosalfa - hsinalfa;
int intx = (int) newx;
float newy = d->axy + (w - d->axx) * sinalfa + hcosalfa ;
int inty = (int)newy;
// check within frame
if (intx >= 0 && intx < width && inty >= 0 && inty < height)
{
// we are digitizing the fraction
// which quantile the fraction is
int qx = (newx - intx) * d->pquant;
int qy = (newy - inty) * d->pquant;
for (int plane = 0; plane < fi->numPlanes; plane++)
{
int pitch = vsapi->getStride(dst, plane) / nbytes;
int pht = vsapi->getFrameHeight(src, plane);
int pwd = vsapi->getFrameWidth(src, plane);
bool useNearPoint = true; // flag for border pixels
if ( subH[plane] == 0 && subW[plane] == 0)
{
if (d->intq > 0)
{
useNearPoint = false;
// check if there are enough pixels around for interpolation.
if (intx >= d->span / 2 && intx < pwd - d->span / 2
&& inty >= d->span / 2 && inty < pht - d->span / 2)
{
useNearPoint = false;
// interpolation
if (fi->sampleType == stInteger)
{
if (nbits == 8)
{
uint8_t min = 0, max = (1 << nbits) - 1;
uint8_t * dp = (uint8_t *)dstp[plane];
const uint8_t * sp = (uint8_t *)srcp[plane];
if (needNotInterpolate(sp + inty * pitch + intx, pitch, 1))
{
dp[h * pitch + w] = sp[inty * pitch + intx];
}
else
{
// get interpolated value
dp[h * pitch + w] = clamp(LaQuantile(sp + inty * pitch + intx,
pitch, d->span, qx, qy, d->lbuf), min, max);
}
}
else // 10 or 12 16 bit samples
{
uint16_t min = 0, max = (1 << nbits) - 1;
uint16_t * dp = (uint16_t *)dstp[plane];
const uint16_t * sp = (uint16_t *)srcp[plane];
if (needNotInterpolate(sp + inty * pitch + intx, pitch, 1))
{
dp[h * pitch + w] = sp[inty * pitch + intx];
}
else
{
// get interpolated value
dp[h * pitch + w] = clamp(LaQuantile(sp + inty * pitch + intx,
pitch, d->span, qx, qy, d->lbuf), min, max);
}
}
}
else // floating pt samples
{
float min = plane == 0 ? 0.0 : fi->colorFamily == cmRGB ? 0.0 : -0.5f;
float max = plane == 0 ? 1.0 : fi->colorFamily == cmRGB ? 1.0 : 0.5f;
float * dp = (float *)dstp[plane];
const float * sp = (float *)srcp[plane];
if (needNotInterpolate(sp + inty * pitch + intx, pitch, 1))
{
dp[h * pitch + w] = sp[inty * pitch + intx];
}
else
{
// get interpolated value
dp[h * pitch + w] = clamp(LaQuantile(sp + inty * pitch + intx,
pitch, d->span, qx, qy, d->lbuf), min, max);
}
}
} // sufficient pixels for interpolation
else
useNearPoint = true;
} // if intq > 0
} // no subsampling present for this plane
else
{
useNearPoint = true;
}
if (d->intq == 0 || useNearPoint)
{
// in case of subsampled data or q = 0, or border pixels use nearest point
int nearx = int(newx + 0.5f);
int neary = int(newy + 0.5f);
if (nearx >= 0 && nearx < width && neary >= 0 && neary < height)
{
if (fi->sampleType == stInteger)
{
if (nbits == 8)
{
uint8_t * dp = dstp[plane];
const uint8_t * sp = srcp[plane];
dp[(h >> subH[plane]) * pitch + (w >> subW[plane])]
= sp[(neary >> subH[plane]) * pitch + (nearx >> subW[plane])];
}
else // 9 to 16 bit samples
{
uint16_t * dp = (uint16_t *)dstp[plane];
const uint16_t * sp = (uint16_t *)srcp[plane];
dp[(h >> subH[plane]) * pitch + (w >> subW[plane])]
= sp[(neary >> subH[plane]) * pitch + (nearx >> subW[plane])];
}
}
else // floating pt samples
{
float * dp = (float *)dstp[plane];
const float * sp = (float *)srcp[plane];
dp[(h >> subH[plane]) * pitch + (w >> subW[plane])]
= sp[(neary >> subH[plane]) * pitch + (nearx >> subW[plane])];
}
}// if nearx and neary in frame
} // intq 0 or useNearPoint
} // for plane
} // if intx inty in frame
} // for w
} // for h
// Release the source frame
vsapi->freeFrame(src);
vsapi->freeFrame(bkg);
// A reference is consumed when it is returned, so saving the dst reference somewhere
// and reusing it is not allowed.
return dst;
}
return 0;
}
// Free all allocated data on filter destruction
static void VS_CC rotateFree(void *instanceData, VSCore *core, const VSAPI *vsapi)
{
RotateData *d = (RotateData *)instanceData;
vsapi->freeNode(d->node[0]);
vsapi->freeNode(d->node[1]);
if (d->lbuf != NULL)
vs_aligned_free(d->lbuf);
free(d);
}
// This function is responsible for validating arguments and creating a new filter
static void VS_CC rotateCreate(const VSMap *in, VSMap *out, void *userData, VSCore *core, const VSAPI *vsapi) {
RotateData d;
RotateData *data;
int err;
// Get a clip reference from the input arguments. This must be freed later.
d.node[0] = vsapi->propGetNode(in, "clip", 0, 0);
d.vi[0] = vsapi->getVideoInfo(d.node[0]);
// In this first version we only want to handle 8bit integer formats. Note that
// vi->format can be 0 if the input clip can change format midstream.
if (!isConstantFormat(d.vi[0] ) )
{
vsapi->setError(out, "rotate: only constant format input supported");
vsapi->freeNode(d.node[0]);
return;
}
d.node[1] = vsapi->propGetNode(in, "bkg", 0, 0);
d.vi[1] = vsapi->getVideoInfo(d.node[1]);
// In this first version we only want to handle 8bit integer formats. Note that
// vi->format can be 0 if the input clip can change format midstream.
if (!isSameFormat(d.vi[0] , d.vi[1]))
{
vsapi->setError(out, "rotate: background clip bkg must have same format as main clip");
vsapi->freeNode(d.node[0]);
vsapi->freeNode(d.node[1]);
return;
}
// If a property read fails for some reason (index out of bounds/wrong type)
// then err will have flags set to indicate why and 0 will be returned. This
// can be very useful to know when having optional arguments. Since we have
// strict checking because of what we wrote in the argument string, the only
// reason this could fail is when the value wasn't set ht the user.
// And when it's not set we want it to default to enabled.
d.dd = vsapi->propGetFloat(in, "angle", 0, 0);
d.dinc = vsapi->propGetFloat(in, "dinc", 0, &err);
if(err)
{
d.dinc = 0.0;
}
d.lx = vsapi->propGetInt(in, "lx", 0, &err);
if(err)
d.lx = 0;
if( d.lx < 0 || d.lx > d.vi[0]->width - 2)
{
vsapi->setError(out, "rotate: lx must be within clip and not more than frame width - 2");
vsapi->freeNode(d.node[0]);
vsapi->freeNode(d.node[1]);
return;
}
d.wd = vsapi->propGetInt(in, "wd", 0, &err);
if(err)
d.wd = d.vi[0]->width - d.lx;
if( d.wd < 2 || d.wd > d.vi[0]->width - d.lx)
{
vsapi->setError(out, "rotate: wd must be atleast 2 and lx + wd within clip width");
vsapi->freeNode(d.node[0]);
vsapi->freeNode(d.node[1]);
return;
}
d.ty = vsapi->propGetInt(in, "ty", 0, &err);
if(err)
d.ty = 0;
if( d.ty < 0 || d.ty > d.vi[0]->height - 2)
{
vsapi->setError(out, "rotate: ty must be within clip and not more than frame height - 2");
vsapi->freeNode(d.node[0]);
vsapi->freeNode(d.node[1]);
return;
}
d.ht = vsapi->propGetInt(in, "ht", 0, &err);
if(err)
d.ht = d.vi[0]->height - d.ty;
if( d.ht < 2 || d.ht > d.vi[0]->height - d.ty)
{
vsapi->setError(out, "rotate: ht must be atleast 2 and also ensure ty + ht not more than frame height");
vsapi->freeNode(d.node[0]);
vsapi->freeNode(d.node[1]);
return;
}
d.axx = vsapi->propGetInt(in, "axx", 0, &err);
if(err)
d.axx = d.lx + d.wd/2;
d.axy = vsapi->propGetInt(in, "axy", 0, &err);
if(err)
d.axy = d.ty + d.ht/2;
d.intq = !!vsapi->propGetInt(in, "intq", 0, &err);
if (err)
d.intq = 2;
// Let's pretend the only allowed values are 1 or 0...
if (d.intq < 0 || d.intq > 3) {
vsapi->setError(out, "rotate: intq must be 0 for near point, or 1 for bilinear or 2 bicubic or 3 for Lanczos interpolation");
vsapi->freeNode(d.node[0]);
vsapi->freeNode(d.node[1]);
return;
}
// I usually keep the filter data struct on the stack and don't allocate it
// until all the input validation is done.
data = (RotateData *) malloc(sizeof(d));
*data = d;
// Creates a new filter and returns a reference to it. Always pass on the in and out
// arguments or unexpected things may happen. The name should be something that's
// easy to connect to the filter, like its function name.
// The three function pointers handle initialization, frame processing and filter destruction.
// The filtermode is very important to get right as it controls how threading of the filter
// is handled. In general you should only use fmParallel whenever possible. This is if you
// need to modify no shared data at all when the filter is running.
// For more complicated filters, fmParallelRequests is usually easier to achieve as it can
// be prefetched in parallel but the actual processing is serialized.
// The others can be considered special cases where fmSerial is useful to source filters and
// fmUnordered is useful when a filter's state may change even when deciding which frames to
// prefetch (such as a cache filter).
// If your filter is really fast (such as a filter that only resorts frames) you should set the
// nfNoCache flag to make the caching work smoother.
vsapi->createFilter(in, out, "Rotate", rotateInit, rotateGetFrame, rotateFree, fmParallel, 0, data, core);
}
//////////////////////////////////////////
// Init
// This is the entry point that is called when a plugin is loaded. You are only supposed
// to call the two provided functions here.
// configFunc sets the id, namespace, and long name of the plugin (the last 3 arguments
// never need to be changed for a normal plugin).
//
// id: Needs to be a "reverse" url and unique among all plugins.
// It is inspired ht how android packages identify themselves.
// If you don't own a domain then make one up that's related
// to the plugin name.
//
// namespace: Should only use [a-z_] and not be too long.
//
// full name: Any name that describes the plugin nicely.
//
// registerFunc is called once for each function you want to register. Function names
// should be PascalCase. The argument string has this format:
// name:type; or name:type:flag1:flag2....;
// All argument name should be lowercase and only use [a-z_].
// The valid types are int,float,data,clip,frame,func. [] can be appended to allow arrays
// of type to be passed (numbers:int[])
// The available flags are opt, to make an argument optional, empty, which controls whether
// or not empty arrays are accepted
/*
VS_EXTERNAL_API(void) VapourSynthPluginInit(VSConfigPlugin configFunc, VSRegisterFunction registerFunc, VSPlugin *plugin) {
configFunc("in.vcmohan.move", "move", "VapourSynth Rotate Plugin", VAPOURSYNTH_API_VERSION, 1, plugin);
registerFunc("Rotate", "clip:clip;bkg:clip;angle:float;dinc:float:opt;lx:int:opt;wd:int:opt;ty:int:opt;ht:int:opt;axx:int:opt;axy:int:opt;intq:int:opt;", rotateCreate, 0, plugin);
}
*/