-
Notifications
You must be signed in to change notification settings - Fork 288
/
Copy pathsolution.cpp
75 lines (58 loc) · 2.94 KB
/
solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/*
LOGIC:
===============================================================================================================================
1. Since we want maximum subarray sum circularly here
we calculate maximum subarray sum(maxSoFar) and minimum subrray sum(minSoFar).
2. Also maintain a sum of all element of array(sum).
3. Case 1:
Now if the `minSoFar` is equal to the `sum` of elements in the array,
it means all the elements in the array are negative.
So we can safely return `maxSoFar` as it'll be maximum subarray sum(i.e a single max negative element).
Case 2:
If the `minSoFar` is not equal to the `sum` of elements in the array,
it means we have both positive and negative elements in the array.
Eg - 1: When all negative elements are between positive elements
___ ___
[2,3,-2,-3,-1,3,5] >>> Here maximum subarray sum circularly possible is { (3) + (5) + (2) + (3) = 13 }
___ ___
We can get this maximum subarray sum by subtracting `minSoFar` from `sum` i.e { (7) - (-6) = 13 }
Eg - 2: The Negatives are interleaved with positives.
______
[-2,-3,2,-1,3,-4] >>> Here maximum subarray sum circularly possible is { (2) + (-1) + (3) = 4 } which will be `maxSoFar`
______
But if we return `sum - minSoFar` here it'll be wrong answer { (-5) - (-5) = 0 }
So we return maximum of (maxSoFar, sum - minSoFar).
===============================================================================================================================
Time Complexity: O(2n) ~= O(n), since we do 2 passes over array.
Space complexity: O(1), since no other additional memory is used apart from 5 variables.
*/
class Solution {
public:
int maxSubarraySumCircular(vector<int>& A) {
int n = A.size();
int maxSoFar = A[0], maxEndHere = A[0], sum = A[0];
for(int i = 1; i < n; ++i){
// Current maximum sum including element at index `i`
// Here we include element every index `i` because we want contiguous sum.
maxEndHere = max(maxEndHere + A[i], A[i]);
// Global maximum subarray sum which may or may not include element at index `i`.
if(maxEndHere > maxSoFar)
maxSoFar = maxEndHere;
sum += A[i];
}
int minSoFar = A[0]; minEndHere = A[0];
for(int i = 1; i < n; ++i){
// Current minimum sum including element at index `i`
// Here we include element every index `i` because we want contiguous sum.
minEndHere = min(minEndHere + A[i], A[i]);
// Global minimum subarray sum which may or may not include element at index `i`.
if(minEndHere < minSoFar)
minSoFar = minEndHere;
}
// If all are negatives in the array.
if(sum == minSoFar)
return maxSoFar;
// Refer to the LOGIC section above.
return max(maxSoFar, sum - minSoFar);
}
};