Development and discussion of DNNC operators.
-
Our work is based on ONNX operator release 1.5.0 till now.
-
To get started on development, see this Developer's getting started guide.
-
To get an idea of how to implement numpy like interface with dnnc see dnnc Tensor Functions.
-
To see how to implement dnnc python interface see this Implementation guide
-
To see why we are using Eigen library check this: Why should we use Eigen
-
To refer back to the original Readme click here.
Operator | Doxygen | Testcases | Dimensions required | Dimensions supported | Broadcasting required | Broadcasting supported | Completion status | Contributer |
---|---|---|---|---|---|---|---|---|
Abs | N D | N D | ❌ | ❌ | ✔️ | Hrishikesh | ||
Acos | N D | N D | ❌ | ❌ | ✔️ | Hrishikesh | ||
Acosh | N D | N D | ❌ | ❌ | ✔️ | Hrishikesh | ||
Add | ✔️ | ✔️ | N D | N D | ✔️ | ✔️ | ✔️ | Rohit |
And | ✔️ | ✔️ | N D | N D | ✔️ | ✔️ | ✔️ | Gunjan |
ArgMax | ||||||||
ArgMin | ||||||||
Asin | N D | N D | ❌ | ❌ | ✔️ | Hrishikesh | ||
Asinh | N D | N D | ❌ | ❌ | ✔️ | Hrishikesh | ||
Atan | N D | N D | ❌ | ❌ | ✔️ | Hrishikesh | ||
Atanh | N D | N D | ❌ | ❌ | ✔️ | Hrishikesh | ||
AveragePool | ||||||||
BatchNormalization | ||||||||
BitShift | ✔️ | ✔️ | N D | N D | ✔️ | ✔️ | ✔️ | Gunjan |
Cast | ||||||||
Ceil | ||||||||
Clip | ||||||||
Compress | ||||||||
Concat | ||||||||
Constant | N D | N D | ❌ | ❌ | ✔️ | Rohit | ||
ConstantOfShape | ||||||||
Conv | ✔️ | N D | N D | ✔️ | Rohit | |||
ConvInteger | ||||||||
ConvTranspose | ||||||||
Cos | ||||||||
Cosh | ||||||||
CumSum | ||||||||
DepthToSpace | ||||||||
DequantizeLinear | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Gunjan |
Div | ✔️ | ✔️ | N D | N D | ✔️ | ✔️ | ✔️ | Gunjan |
Dropout | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Gunjan |
Elu | ✔️ | ✔️ | 1 D | 1 D | ❌ | ❌ | ✔️ | Gunjan |
Equal | ✔️ | ✔️ | N D | N D | ✔️ | ✔️ | ✔️ | Gunjan |
Erf | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Gunjan |
Exp | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Gunjan |
Expand | ||||||||
EyeLike | ✔️ | ✔️ | 2 D | 2 D | ❌ | ❌ | DataType required | Gunjan |
Flatten | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Gunjan |
Floor | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Gunjan |
GRU | ||||||||
Gather | ||||||||
GatherElements | ||||||||
Gemm | ✔️ | ✔️ | 2 D | 2 D | ✔️ | ❌ | ✔️ | Gunjan |
GlobalAveragePool | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Nalin Shani |
GlobalLpPool | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Nalin Shani |
GlobalMaxPool | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Nalin Shani |
Greater | ✔️ | ✔️ | N D | N D | ✔️ | ✔️ | ✔️ | Nalin Shani |
HardSigmoid | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Nalin Shani |
HardMax | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Nalin Shani |
Identity | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Nalin Shani |
If | ||||||||
InstanceNormalization | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Nalin Shani |
IsInf | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Nalin Shani |
IsNaN | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Nalin Shani |
LRN | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Nalin Shani |
LSTM | ||||||||
LeakyRelu | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Nalin Shani |
Less | ✔️ | ✔️ | N D | N D | ✔️ | ✔️ | ✔️ | Nikhil |
Log | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Nikhil |
LogSoftmax | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Nikhil |
Loop | ||||||||
LpNormalization | ✔️ | ✔️ | 2 D | 2 D | ❌ | ❌ | ✔️ | Nikhil |
LpPool | ||||||||
MatMul | 4 D doesn't work | N D | 4 D | ❌ | ❌ | ✔️ | Rohit | |
MatMulInteger | ✔️ | 4 D doesn't work | N D | 3 D | ❌ | ❌ | ✔️ | Nikhil |
Max | ✔️ | ✔️ | N D | N D | ✔️ | ✔️ | ✔️ | Nikhil |
MaxPool | ||||||||
MaxRoiPool | ||||||||
MaxUnpool | ||||||||
Mean | ✔️ | ✔️ | N D | N D | ✔️ | ✔️ | ✔️ | Nikhil |
Min | ✔️ | ✔️ | N D | N D | ✔️ | ✔️ | ✔️ | Nikhil |
Mod | ||||||||
Mul | ||||||||
Multinomial | ||||||||
Neg | ||||||||
NonMaxSupression | ||||||||
NonZero | ||||||||
Not | ✔️ | ✔️ | N D | N D | ❌ | ❌ | ✔️ | Gunjan |
OneHot | ||||||||
Or | ✔️ | ✔️ | N D | N D | ✔️ | ✔️ | ✔️ | Gunjan |
PRelu | ||||||||
Pad | ||||||||
Pow | ✔️ | ✔️ | N D | N D | ✔️ | ✔️ | ✔️ | Gunjan |
QLinearConv | ||||||||
QlinearMatMul | ||||||||
QuantizeLinear | ||||||||
RNN | ||||||||
RandomNormal | ||||||||
RandomNormalLike | ||||||||
RandomUniform | ||||||||
RandomUniformLike | ||||||||
Reciprocal | ||||||||
ReduceL1 | ||||||||
ReduceL2 | ||||||||
ReduceLogSum | ||||||||
ReduceLogSumExp | ||||||||
ReduceMax | ||||||||
ReduceMean | ||||||||
ReduceMin | ||||||||
ReduceProd | ||||||||
ReduceSum | ||||||||
ReduceSumSquare | ||||||||
Relu | ||||||||
Reshape | N D | N D | ❌ | ❌ | ✔️ | Rohit | ||
Resize | ||||||||
ReverseSequence | ||||||||
RoiAlign | ||||||||
Round | ||||||||
Scan | ||||||||
Scatter | ||||||||
ScatterElements | ||||||||
Selu | ||||||||
Shape | ||||||||
Shrink | ||||||||
Sigmoid | N D | 3 D | ✔️ | Subham | ||||
Sign | N D | 3 D | ✔️ | Subham | ||||
Sin | N D | 3 D | ✔️ | Subham | ||||
Sinh | N D | 3 D | ✔️ | Subham | ||||
Size | ||||||||
Slice | ||||||||
Softmax | 2 D | N D | ✔️ | Subham | ||||
Softplus | N D | 3 D | ✔️ | Subham | ||||
Softsign | N D | 3 D | ✔️ | Subham | ||||
SpaceToDepth | ||||||||
Split | ||||||||
Sqrt | N D | 3 D | ✔️ | Subham | ||||
Squeeze | ||||||||
StringNormalizer | ||||||||
Sub | N D | 4 D | ❌ | ✔️ | Vishal | |||
Sum | ||||||||
Tan | N D | 3 D | ❌ | ✔️ | Vishal | |||
Tanh | N D | 3 D | ❌ | ✔️ | Vishal | |||
TfIdfVectorizer | ||||||||
ThresholdedRelu | N D | N D | ❌ | ❌ | ✔️ | Rohit | ||
Tile | ||||||||
TopK | ||||||||
Transpose | N D | 3 D | ✔️ | Vishal | ||||
Unique | ||||||||
Unsqueeze | ||||||||
Upsample | ||||||||
Where | ||||||||
Xor | ✔️ | ✔️ | N D | N D | ✔️ | ✔️ | ✔️ | Gunjan |