-
Notifications
You must be signed in to change notification settings - Fork 522
/
Copy pathCode01_MinimumPathSum.java
111 lines (103 loc) · 2.84 KB
/
Code01_MinimumPathSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
package class067;
// 最小路径和
// 给定一个包含非负整数的 m x n 网格 grid
// 请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
// 说明:每次只能向下或者向右移动一步。
// 测试链接 : https://leetcode.cn/problems/minimum-path-sum/
public class Code01_MinimumPathSum {
// 暴力递归
public static int minPathSum1(int[][] grid) {
return f1(grid, grid.length - 1, grid[0].length - 1);
}
// 从(0,0)到(i,j)最小路径和
// 一定每次只能向右或者向下
public static int f1(int[][] grid, int i, int j) {
if (i == 0 && j == 0) {
return grid[0][0];
}
int up = Integer.MAX_VALUE;
int left = Integer.MAX_VALUE;
if (i - 1 >= 0) {
up = f1(grid, i - 1, j);
}
if (j - 1 >= 0) {
left = f1(grid, i, j - 1);
}
return grid[i][j] + Math.min(up, left);
}
// 记忆化搜索
public static int minPathSum2(int[][] grid) {
int n = grid.length;
int m = grid[0].length;
int[][] dp = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
dp[i][j] = -1;
}
}
return f2(grid, grid.length - 1, grid[0].length - 1, dp);
}
public static int f2(int[][] grid, int i, int j, int[][] dp) {
if (dp[i][j] != -1) {
return dp[i][j];
}
int ans;
if (i == 0 && j == 0) {
ans = grid[0][0];
} else {
int up = Integer.MAX_VALUE;
int left = Integer.MAX_VALUE;
if (i - 1 >= 0) {
up = f2(grid, i - 1, j, dp);
}
if (j - 1 >= 0) {
left = f2(grid, i, j - 1, dp);
}
ans = grid[i][j] + Math.min(up, left);
}
dp[i][j] = ans;
return ans;
}
// 严格位置依赖的动态规划
public static int minPathSum3(int[][] grid) {
int n = grid.length;
int m = grid[0].length;
int[][] dp = new int[n][m];
dp[0][0] = grid[0][0];
for (int i = 1; i < n; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int j = 1; j < m; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
for (int i = 1; i < n; i++) {
for (int j = 1; j < m; j++) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[n - 1][m - 1];
}
// 严格位置依赖的动态规划 + 空间压缩技巧
public static int minPathSum4(int[][] grid) {
int n = grid.length;
int m = grid[0].length;
// 先让dp表,变成想象中的表的第0行的数据
int[] dp = new int[m];
dp[0] = grid[0][0];
for (int j = 1; j < m; j++) {
dp[j] = dp[j - 1] + grid[0][j];
}
for (int i = 1; i < n; i++) {
// i = 1,dp表变成想象中二维表的第1行的数据
// i = 2,dp表变成想象中二维表的第2行的数据
// i = 3,dp表变成想象中二维表的第3行的数据
// ...
// i = n-1,dp表变成想象中二维表的第n-1行的数据
dp[0] += grid[i][0];
for (int j = 1; j < m; j++) {
dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
}
}
return dp[m - 1];
}
}