-
Notifications
You must be signed in to change notification settings - Fork 531
/
Copy pathCode03_HeightAndChoir.java
119 lines (107 loc) · 2.99 KB
/
Code03_HeightAndChoir.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
package class077;
// 合唱队
// 具体描述情打开链接查看
// 测试链接 : https://www.luogu.com.cn/problem/P3205
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的所有代码,并把主类名改成"Main",可以直接通过
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class Code03_HeightAndChoir {
public static int MAXN = 1001;
public static int[] nums = new int[MAXN];
public static int[][] dp = new int[MAXN][2];
public static int n;
public static int MOD = 19650827;
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StreamTokenizer in = new StreamTokenizer(br);
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
while (in.nextToken() != StreamTokenizer.TT_EOF) {
n = (int) in.nval;
for (int i = 1; i <= n; i++) {
in.nextToken();
nums[i] = (int) in.nval;
}
if (n == 1) {
out.println(1);
} else {
out.println(compute2());
}
}
out.flush();
out.close();
br.close();
}
// 时间复杂度O(n^2)
// 严格位置依赖的动态规划
public static int compute1() {
// 人的编号范围 : 1...n
// dp[l][r][0] : 形成l...r的状况的方法数,同时要求l位置的数字是最后出现的
// dp[l][r][1] : 形成l...r的状况的方法数,同时要求r位置的数字是最后出现的
int[][][] dp = new int[n + 1][n + 1][2];
for (int i = 1; i < n; i++) {
if (nums[i] < nums[i + 1]) {
dp[i][i + 1][0] = 1;
dp[i][i + 1][1] = 1;
}
}
for (int l = n - 2; l >= 1; l--) {
for (int r = l + 2; r <= n; r++) {
if (nums[l] < nums[l + 1]) {
dp[l][r][0] = (dp[l][r][0] + dp[l + 1][r][0]) % MOD;
}
if (nums[l] < nums[r]) {
dp[l][r][0] = (dp[l][r][0] + dp[l + 1][r][1]) % MOD;
}
if (nums[r] > nums[l]) {
dp[l][r][1] = (dp[l][r][1] + dp[l][r - 1][0]) % MOD;
}
if (nums[r] > nums[r - 1]) {
dp[l][r][1] = (dp[l][r][1] + dp[l][r - 1][1]) % MOD;
}
}
}
return (dp[1][n][0] + dp[1][n][1]) % MOD;
}
// 时间复杂度O(n^2)
// 空间压缩
public static int compute2() {
if (nums[n - 1] < nums[n]) {
dp[n][0] = 1;
dp[n][1] = 1;
}
for (int l = n - 2; l >= 1; l--) {
if (nums[l] < nums[l + 1]) {
dp[l + 1][0] = 1;
dp[l + 1][1] = 1;
} else {
dp[l + 1][0] = 0;
dp[l + 1][1] = 0;
}
for (int r = l + 2; r <= n; r++) {
int a = 0;
int b = 0;
if (nums[l] < nums[l + 1]) {
a = (a + dp[r][0]) % MOD;
}
if (nums[l] < nums[r]) {
a = (a + dp[r][1]) % MOD;
}
if (nums[r] > nums[l]) {
b = (b + dp[r - 1][0]) % MOD;
}
if (nums[r] > nums[r - 1]) {
b = (b + dp[r - 1][1]) % MOD;
}
dp[r][0] = a;
dp[r][1] = b;
}
}
return (dp[n][0] + dp[n][1]) % MOD;
}
}