-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathcoco.py
180 lines (158 loc) · 7 KB
/
coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from .config import HOME
import os
import os.path as osp
import sys
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
import cv2
import numpy as np
COCO_ROOT = osp.join(HOME, 'data/coco/')
IMAGES = 'images'
ANNOTATIONS = 'annotations'
COCO_API = 'PythonAPI'
INSTANCES_SET = 'instances_{}.json'
COCO_CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire', 'hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra',
'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush')
def get_label_map(label_file):
label_map = {}
labels = open(label_file, 'r')
for line in labels:
ids = line.split(',')
label_map[int(ids[0])] = int(ids[1])
return label_map
class COCOAnnotationTransform(object):
"""Transforms a COCO annotation into a Tensor of bbox coords and label index
Initilized with a dictionary lookup of classnames to indexes
"""
def __init__(self):
self.label_map = get_label_map(osp.join(COCO_ROOT, 'coco_labels.txt'))
def __call__(self, target, width, height):
"""
Args:
target (dict): COCO target json annotation as a python dict
height (int): height
width (int): width
Returns:
a list containing lists of bounding boxes [bbox coords, class idx]
"""
scale = np.array([width, height, width, height])
res = []
for obj in target:
if 'bbox' in obj:
bbox = obj['bbox']
bbox[2] += bbox[0]
bbox[3] += bbox[1]
label_idx = self.label_map[obj['category_id']] - 1
final_box = list(np.array(bbox)/scale)
final_box.append(label_idx)
res += [final_box] # [xmin, ymin, xmax, ymax, label_idx]
else:
print("no bbox problem!")
return res # [[xmin, ymin, xmax, ymax, label_idx], ... ]
class COCODetection(data.Dataset):
"""`MS Coco Detection <http://mscoco.org/dataset/#detections-challenge2016>`_ Dataset.
Args:
root (string): Root directory where images are downloaded to.
set_name (string): Name of the specific set of COCO images.
transform (callable, optional): A function/transform that augments the
raw images`
target_transform (callable, optional): A function/transform that takes
in the target (bbox) and transforms it.
"""
def __init__(self, root, image_set='trainval35k', transform=None,
target_transform=COCOAnnotationTransform(), dataset_name='MS COCO'):
sys.path.append(osp.join(root, COCO_API))
from pycocotools.coco import COCO
self.root = osp.join(root, IMAGES, image_set)
self.coco = COCO(osp.join(root, ANNOTATIONS,
INSTANCES_SET.format(image_set)))
self.ids = list(self.coco.imgToAnns.keys())
self.transform = transform
self.target_transform = target_transform
self.name = dataset_name
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: Tuple (image, target).
target is the object returned by ``coco.loadAnns``.
"""
im, gt, h, w = self.pull_item(index)
return im, gt
def __len__(self):
return len(self.ids)
def pull_item(self, index):
"""
Args:
index (int): Index
Returns:
tuple: Tuple (image, target, height, width).
target is the object returned by ``coco.loadAnns``.
"""
img_id = self.ids[index]
target = self.coco.imgToAnns[img_id]
ann_ids = self.coco.getAnnIds(imgIds=img_id)
target = self.coco.loadAnns(ann_ids)
path = osp.join(self.root, self.coco.loadImgs(img_id)[0]['file_name'])
assert osp.exists(path), 'Image path does not exist: {}'.format(path)
img = cv2.imread(osp.join(self.root, path))
height, width, _ = img.shape
if self.target_transform is not None:
target = self.target_transform(target, width, height)
if self.transform is not None:
target = np.array(target)
img, boxes, labels = self.transform(img, target[:, :4],
target[:, 4])
# to rgb
img = img[:, :, (2, 1, 0)]
target = np.hstack((boxes, np.expand_dims(labels, axis=1)))
return torch.from_numpy(img).permute(2, 0, 1), target, height, width
def pull_image(self, index):
'''Returns the original image object at index in PIL form
Note: not using self.__getitem__(), as any transformations passed in
could mess up this functionality.
Argument:
index (int): index of img to show
Return:
cv2 img
'''
img_id = self.ids[index]
path = self.coco.loadImgs(img_id)[0]['file_name']
return cv2.imread(osp.join(self.root, path), cv2.IMREAD_COLOR)
def pull_anno(self, index):
'''Returns the original annotation of image at index
Note: not using self.__getitem__(), as any transformations passed in
could mess up this functionality.
Argument:
index (int): index of img to get annotation of
Return:
list: [img_id, [(label, bbox coords),...]]
eg: ('001718', [('dog', (96, 13, 438, 332))])
'''
img_id = self.ids[index]
ann_ids = self.coco.getAnnIds(imgIds=img_id)
return self.coco.loadAnns(ann_ids)
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
fmt_str += ' Root Location: {}\n'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
return fmt_str