-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathcalculate_mean.py
48 lines (43 loc) · 1.36 KB
/
calculate_mean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import csv
import random
import math
def loadCsv(filename):
lines = csv.reader(open(filename, "rb"))
dataset = list(lines)
for i in range(len(dataset)):
dataset[i] = [float(x) for x in dataset[i]]
return dataset
def splitDataset(dataset, splitRatio):
trainSize = int(len(dataset) * splitRatio)
trainSet = []
copy = list(dataset)
while len(trainSet) < trainSize:
index = random.randrange(len(copy))
trainSet.append(copy.pop(index))
return [trainSet, copy]
def separateByClass(dataset):
separated = {}
for i in range(len(dataset)):
vector = dataset[i]
if (vector[-1] not in separated):
separated[vector[-1]] = []
separated[vector[-1]].append(vector)
return separated
def mean(numbers):
return sum(numbers)/float(len(numbers))
def stdev(numbers):
avg = mean(numbers)
variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)
def main():
filename = 'pima_diabetes.csv'
dataset = loadCsv(filename)
dataset = [[1], [2], [3], [4], [5]]
splitRatio = 0.67
train, test = splitDataset(dataset, splitRatio)
dataset = [[1,20,1], [2,21,0], [3,22,1]]
separated = separateByClass(dataset)
numbers = [1,2,3,4,5]
print('Summary of {0}: mean={1}, stdev={2}').format(numbers, mean(numbers), stdev(numbers))
print"==================================================================="
main()