Welcome to the second tutorial in our LangChain and LangGraph series! In this tutorial, we'll dive deeper into working with language models in LangChain, focusing on the Groq LLM.
- How to connect to different language models in LangChain
- Creating and using prompt templates
- Building simple prompt chains
- Handling model responses
- Best practices for prompt engineering
- Completion of Tutorial 1: Introduction to LangChain
- Basic understanding of Python and Jupyter Notebooks
- A Groq API key (sign up at https://console.groq.com)
cd langchain-langgraph-tutorial
source venv/bin/activate
cd Tutorial02
cd langchain-langgraph-tutorial
.\venv\Scripts\activate
cd Tutorial02
jupyter notebook Tutorial_2_Working_with_Language_Models.ipynb
- Setting up different LLM providers
- Understanding prompt templates
- Chain composition basics
- Response parsing and handling
- Prompt engineering techniques
Tutorial_2_Working_with_Language_Models.ipynb
: Main tutorial notebookexamples/
: Directory containing example prompts and chainsutils/
: Helper functions for working with LLMsREADME.md
: This documentation file
- Configuring model parameters
- Handling rate limits and quotas
- Implementing fallback strategies
- Model response comparison
- Template creation best practices
- Dynamic prompt generation
- Context window optimization
- Output formatting techniques
- Common API issues
- Token limit management
- Response validation
- Fallback strategies
-
Model Response Errors
- Check API key validity
- Verify prompt length
- Monitor rate limits
-
Chain Execution Problems
- Debug individual chain components
- Check memory management
- Verify input/output formats
After completing this tutorial:
- Explore advanced chain architectures
- Practice prompt engineering techniques
- Experiment with different LLM providers
- Prepare for Tutorial 3: Document Processing
Stay tuned for Tutorial 3 where we'll explore:
- Document loading and processing
- Text chunking strategies
- Vector stores and embeddings
- Retrieval-augmented generation
- LangChain LLM Documentation
- Groq API Best Practices
- Prompt Engineering Guidelines
- Model Selection Guide
Happy learning!