Welcome to the third tutorial in our LangChain and LangGraph series! In this tutorial, we'll explore document processing techniques using LangChain, focusing on loading, parsing, and analyzing text documents.
- Loading and parsing different document types
- Text splitting and chunking strategies
- Building a simple question-answering system
- Implementing semantic search
- Completion of Tutorial 1 and 2
- Basic understanding of Python and Jupyter Notebooks
- A Groq API key (sign up at https://console.groq.com)
cd langchain-langgraph-tutorial
source venv/bin/activate
cd Tutorial03
cd langchain-langgraph-tutorial
.\venv\Scripts\activate
cd Tutorial03
From the website https://ollama.com/download - download the Ollama CLI and install it. Then run the following command to pull the minilm model.
ollama pull all-minilm
jupyter notebook Tutorial_3_Document_Processing.ipynb
Tutorial_3_Document_Processing.ipynb
: Main tutorial notebooksample_documents/
: Example documents for processing- Text files (.txt)
- PDF documents (.pdf)
- Word documents (.docx)
- Markdown files (.md)
utils/
: Helper functions for document processingREADME.md
: Documentation file
- Different document formats support
- Metadata extraction
- Error handling strategies
- Batch processing
- Chunking algorithms
- Splitting strategies
- Token management
- Content preservation
- Vector store setup
- Embedding generation
- Query processing
- Result ranking
-
Document Loading Errors
- File format compatibility
- Encoding issues
- Memory constraints
- Permission problems
-
Processing Challenges
- Large document handling
- Special character management
- Language detection
- Metadata preservation
After completing this tutorial:
- Experiment with different document types
- Optimize chunking strategies
- Build custom document processors
- Prepare for Tutorial 4: Agents in LangChain
Stay tuned for Tutorial 4 where we'll explore:
- Agent architectures
- Tool integration
- Planning strategies
- Multi-agent systems
- LangChain Document Loaders Guide
- Text Splitting Best Practices
- Vector Store Documentation
- Embedding Models Overview
Happy learning!