-
Notifications
You must be signed in to change notification settings - Fork 400
/
Copy pathQuadraticFit2.cs
177 lines (157 loc) · 5.23 KB
/
QuadraticFit2.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
using System;
using System.Collections.Generic;
namespace g3
{
// ported from WildMagic5 Wm5ApprQuadraticFit2
public static class QuadraticFit2
{
// The quadratic fit is
//
// 0 = C[0] + C[1]*X + C[2]*Y + C[3]*X^2 + C[4]*Y^2 + C[5]*X*Y
//
// subject to Length(C) = 1. Minimize E(C) = C^t M C with Length(C) = 1
// and M = (sum_i V_i)(sum_i V_i)^t where
//
// V = (1, X, Y, X^2, Y^2, X*Y)
//
// The minimum value is the smallest eigenvalue of M and C is a corresponding
// unit length eigenvector.
//
// Input:
// n = number of points to fit
// p[0..n-1] = array of points to fit
//
// Output:
// c[0..5] = coefficients of quadratic fit (the eigenvector)
// return value of function is nonnegative and a measure of the fit
// (the minimum eigenvalue; 0 = exact fit, positive otherwise)
// Canonical forms. The quadratic equation can be factored into
// P^T A P + B^T P + K = 0 where P = (X,Y,Z), K = C[0], B = (C[1],C[2],C[3]),
// and A is a 3x3 symmetric matrix with A00 = C[4], A11 = C[5], A22 = C[6],
// A01 = C[7]/2, A02 = C[8]/2, and A12 = C[9]/2. Matrix A = R^T D R where
// R is orthogonal and D is diagonal (using an eigendecomposition). Define
// V = R P = (v0,v1,v2), E = R B = (e0,e1,e2), D = diag(d0,d1,d2), and f = K
// to obtain
//
// d0 v0^2 + d1 v1^2 + d2 v^2 + e0 v0 + e1 v1 + e2 v2 + f = 0
//
// The characterization depends on the signs of the d_i.
public static double Fit(Vector2d[] points, double[] coefficients) {
DenseMatrix A = new DenseMatrix(6, 6);
int numPoints = points.Length;
for (int i = 0; i < numPoints; ++i) {
double x = points[i].x;
double y = points[i].y;
double x2 = x * x;
double y2 = y * y;
double xy = x * y;
double x3 = x * x2;
double xy2 = x * y2;
double x2y = x * xy;
double y3 = y * y2;
double x4 = x * x3;
double x2y2 = x * xy2;
double x3y = x * x2y;
double y4 = y * y3;
double xy3 = x * y3;
A[0, 1] += x;
A[0, 2] += y;
A[0, 3] += x2;
A[0, 4] += y2;
A[0, 5] += xy;
A[1, 3] += x3;
A[1, 4] += xy2;
A[1, 5] += x2y;
A[2, 4] += y3;
A[3, 3] += x4;
A[3, 4] += x2y2;
A[3, 5] += x3y;
A[4, 4] += y4;
A[4, 5] += xy3;
}
A[0, 0] = (double)numPoints;
A[1, 1] = A[0, 3];
A[1, 2] = A[0, 5];
A[2, 2] = A[0, 4];
A[2, 3] = A[1, 5];
A[2, 5] = A[1, 4];
A[5, 5] = A[3, 4];
for (int row = 0; row < 6; ++row) {
for (int col = 0; col < row; ++col) {
A[row, col] = A[col, row];
}
}
double invNumPoints = 1.0 / (double)numPoints;
for (int row = 0; row < 6; ++row) {
for (int col = 0; col < 6; ++col) {
A[row, col] *= invNumPoints;
}
}
SymmetricEigenSolver es = new SymmetricEigenSolver(6, 1024);
es.Solve(A.Buffer, SymmetricEigenSolver.SortType.Increasing);
es.GetEigenvector(0, coefficients);
// For an exact fit, numeric round-off errors might make the minimum
// eigenvalue just slightly negative. Return the absolute value since
// the application might rely on the return value being nonnegative.
return Math.Abs(es.GetEigenvalue(0));
}
// If you think your points are nearly circular, use this. The circle is of
// the form C'[0]+C'[1]*X+C'[2]*Y+C'[3]*(X^2+Y^2), where Length(C') = 1. The
// function returns C = (C'[0]/C'[3],C'[1]/C'[3],C'[2]/C'[3]), so the fitted
// circle is C[0]+C[1]*X+C[2]*Y+X^2+Y^2. The center is (xc,yc) =
// -0.5*(C[1],C[2]) and the radius is r = sqrt(xc*xc+yc*yc-C[0]).
public static double FitCircle2(Vector2d[] points, out Circle2d circle )
{
DenseMatrix A = new DenseMatrix(4, 4);
int numPoints = points.Length;
for (int i = 0; i < numPoints; ++i) {
double x = points[i].x;
double y = points[i].y;
double x2 = x * x;
double y2 = y * y;
double xy = x * y;
double r2 = x2 + y2;
double xr2 = x * r2;
double yr2 = y * r2;
double r4 = r2 * r2;
A[0, 1] += x;
A[0, 2] += y;
A[0, 3] += r2;
A[1, 1] += x2;
A[1, 2] += xy;
A[1, 3] += xr2;
A[2, 2] += y2;
A[2, 3] += yr2;
A[3, 3] += r4;
}
A[0, 0] = (double)numPoints;
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < row; ++col) {
A[row, col] = A[col, row];
}
}
double invNumPoints = 1.0 / (double)numPoints;
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
A[row, col] *= invNumPoints;
}
}
SymmetricEigenSolver es = new SymmetricEigenSolver(4, 1024);
es.Solve(A.Buffer, SymmetricEigenSolver.SortType.Increasing);
double[] evector = new double[4];
es.GetEigenvector(0, evector);
double inv = 1.0 / evector[3]; // TODO: Guard against zero divide?
Vector3d coefficients = Vector3d.Zero;
for (int row = 0; row < 3; ++row) {
coefficients[row] = inv * evector[row];
}
Vector2d center = new Vector2d(-0.5 * coefficients[1], -0.5 * coefficients[2]);
double r = Math.Sqrt(Math.Abs(center.LengthSquared - coefficients[0]));
circle = new Circle2d(center, r);
// For an exact fit, numeric round-off errors might make the minimum
// eigenvalue just slightly negative. Return the absolute value since
// the application might rely on the return value being nonnegative.
return Math.Abs(es.GetEigenvalue(0));
}
}
}