-
Notifications
You must be signed in to change notification settings - Fork 400
/
Copy pathMarchingQuads.cs
421 lines (324 loc) · 10.5 KB
/
MarchingQuads.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
using System;
using System.Collections;
namespace g3
{
/// <summary>
/// 2D MarchingQuads polyline extraction from scalar field
/// [TODO] this is very, very old code. Should at minimum rewrite using current
/// vector classes/etc.
/// </summary>
public class MarchingQuads
{
DPolyLine2f m_stroke;
AxisAlignedBox2f m_bounds;
float m_fXShift;
float m_fYShift;
float m_fScale;
int m_nCells;
float m_fCellSize;
static float s_fValueSentinel = 9999999.0f;
float m_fIsoValue;
static int LEFT = 0x1;
static int TOP = 0x2;
static int RIGHT = 0x4;
static int BOTTOM = 0x8;
static int ALL = 0xF;
struct Cell {
uint nPosition; // 16 bits each for x and y (max 16k per axis)
public float fValue; // value in top left corner
public int nLeftVertex; // vertex on left edge
public int nTopVertex; // vertex on top edge
public bool bTouched; // true if node has been seen
public void Initialize( uint x, uint y ) {
this.x = x; this.y = y;
fValue = s_fValueSentinel;
nLeftVertex = nTopVertex = -1;
bTouched = false;
}
public uint x {
get { return nPosition & 0xFFFF; }
set { nPosition = (y << 16) | (value&0xFFFF); }
}
public uint y {
get { return (nPosition >> 16) & 0xFFFF; }
set { nPosition = ((value & 0xFFFF)<<16) | x; }
}
}
Cell[][] m_cells;
struct SeedPoint {
public float x;
public float y;
public SeedPoint(float fX, float fY) {x = fX; y = fY; }
}
ArrayList m_seedPoints;
ImplicitField2d m_field;
ArrayList m_cellStack;
bool[] m_bEdgeSigns;
public MarchingQuads(int nSubdivisions, AxisAlignedBox2f bounds, float fIsoValue) {
m_stroke = new DPolyLine2f();
m_bounds = new AxisAlignedBox2f();
m_nCells = nSubdivisions;
SetBounds(bounds);
m_cells = null;
InitializeCells();
m_seedPoints = new ArrayList();
m_cellStack = new ArrayList();
m_bEdgeSigns = new bool[4];
m_fIsoValue = fIsoValue;
}
public int Subdivisions {
get { return m_nCells; }
set { m_nCells = value; SetBounds( m_bounds ); InitializeCells(); }
}
public AxisAlignedBox2f Bounds {
get { return m_bounds; }
set { SetBounds(value); }
}
public DPolyLine2f Stroke {
get { return m_stroke; }
}
public AxisAlignedBox2f GetBounds() {
return m_bounds;
}
public void AddSeedPoint( float x, float y ) {
m_seedPoints.Add( new SeedPoint(x - m_fXShift, y - m_fYShift) );
}
public void ClearSeedPoints() {
m_seedPoints.Clear();
}
public void ClearStroke() {
m_stroke.Clear();
}
public void Polygonize( ImplicitField2d field ) {
m_field = field;
ResetCells(); // reset bTouched flags
m_cellStack.Clear();
// iterate over seed points
for (int i = 0; i < m_seedPoints.Count; ++i) {
SeedPoint p = (SeedPoint)m_seedPoints[i];
int xi = (int)(p.x / m_fCellSize);
int yi = (int)(p.y / m_fCellSize);
bool bFoundSurface = false;
while (!bFoundSurface && yi > 0 && yi < m_cells.Length-1 && xi > 0 && xi < m_cells[0].Length-1 ) {
if ( m_cells[yi][xi].bTouched == false ) {
bool bResult = ProcessCell(xi,yi);
if (bResult == true)
bFoundSurface = true;
} else
bFoundSurface = true;
xi--;
}
while ( m_cellStack.Count != 0 ) {
Cell cell = (Cell)m_cellStack[ m_cellStack.Count - 1];
m_cellStack.RemoveAt( m_cellStack.Count - 1 );
if ( m_cells[ (int)cell.y ][ (int)cell.x ].bTouched == false) {
bool bResult = ProcessCell( (int)cell.x, (int)cell.y );
if (bResult == false)
bResult = true;
}
}
}
}
void SubdivideStep(ref float fValue1, ref float fValue2, ref float fX1, ref float fY1, ref float fX2, ref float fY2,
bool bVerticalEdge) {
float fAlpha = 0.5f;
float fX = 0.0f, fY = 0.0f;
if (bVerticalEdge) {
fX = fX1;
fY = fAlpha*fY1 + (1.0f-fAlpha)*fY2;
} else {
fX = fAlpha*fX1 + (1.0f-fAlpha)*fX2;
fY = fY1;
}
float fValue = (float)m_field.Value(fX, fY);
if (fValue < m_fIsoValue) {
fValue1 = fValue;
fX1 = fX;
fY1 = fY;
} else {
fValue2 = fValue;
fX2 = fX;
fY2 = fY;
}
}
int LerpAndAddStrokeVertex( float fValue1, float fValue2, int x1, int y1, int x2, int y2, bool bVerticalEdge ) {
// swap if need be
if (fValue1 > fValue2) {
int nSwap = x1;
x1 = x2;
x2 = nSwap;
nSwap = y1;
y1 = y2;
y2 = nSwap;
float fSwap = fValue1;
fValue1 = fValue2;
fValue2 = fSwap;
}
float fRefValue1 = fValue1;
float fRefValue2 = fValue2;
float fX1 = (float)x1 * m_fCellSize + m_fXShift;
float fY1 = (float)y1 * m_fCellSize + m_fYShift;
float fX2 = (float)x2 * m_fCellSize + m_fXShift;
float fY2 = (float)y2 * m_fCellSize + m_fYShift;
for (int i = 0; i < 10; ++i)
SubdivideStep(ref fRefValue1, ref fRefValue2, ref fX1, ref fY1, ref fX2, ref fY2, bVerticalEdge);
if ( Math.Abs(fRefValue1) < Math.Abs(fRefValue2) ) {
return m_stroke.AddVertex(fX1, fY1);
} else {
return m_stroke.AddVertex(fX2, fY2);
}
}
int GetLeftEdgeVertex(int xi, int yi) {
Cell cell = m_cells[yi][xi];
if (cell.nLeftVertex != -1)
return cell.nLeftVertex;
m_cells[yi][xi].nLeftVertex = LerpAndAddStrokeVertex(cell.fValue, m_cells[yi+1][xi].fValue,
xi, yi, xi, yi+1, true);
return m_cells[yi][xi].nLeftVertex;
}
int GetRightEdgeVertex(int xi, int yi) {
Cell cell = m_cells[yi][xi+1];
if (cell.nLeftVertex != -1)
return cell.nLeftVertex;
m_cells[yi][xi+1].nLeftVertex = LerpAndAddStrokeVertex( cell.fValue, m_cells[yi+1][xi+1].fValue,
xi+1, yi, xi+1, yi+1, true);
return m_cells[yi][xi+1].nLeftVertex;
}
int GetTopEdgeVertex(int xi, int yi) {
Cell cell = m_cells[yi][xi];
if (cell.nTopVertex != -1)
return cell.nTopVertex;
m_cells[yi][xi].nTopVertex = LerpAndAddStrokeVertex(cell.fValue, m_cells[yi][xi+1].fValue,
xi, yi, xi+1, yi, false);
return m_cells[yi][xi].nTopVertex;
}
int GetBottomEdgeVertex(int xi, int yi) {
Cell cell = m_cells[yi+1][xi];
if (cell.nTopVertex != -1)
return cell.nTopVertex;
m_cells[yi+1][xi].nTopVertex = LerpAndAddStrokeVertex(cell.fValue, m_cells[yi+1][xi+1].fValue,
xi, yi+1, xi+1, yi+1, false);
return m_cells[yi+1][xi].nTopVertex;
}
bool ProcessCell( int xi, int yi ) {
m_cells[yi][xi].bTouched = true;
int nCase = 0;
for (int i = 0; i < 4; ++i) {
int nxi = xi + (i & 1);
int nyi = yi + ((i >> 1) & 1);
if (m_cells[nyi][nxi].fValue == s_fValueSentinel)
m_cells[nyi][nxi].fValue = m_field.Value( (float)nxi * m_fCellSize + m_fXShift, (float)nyi*m_fCellSize + m_fYShift );
m_bEdgeSigns[i] = (m_cells[nyi][nxi].fValue > m_fIsoValue);
nCase |= (m_bEdgeSigns[i] == true ? 1 : 0) << i;
}
if (nCase == 0 || nCase == 15)
return false; // nothing to do - inside or outside...
// don't actually need to compute all of these...
int nLeftV = 0, nRightV = 0, nTopV = 0, nBottomV = 0;
if ( m_bEdgeSigns[0] != m_bEdgeSigns[2] )
nLeftV = GetLeftEdgeVertex(xi,yi);
if ( m_bEdgeSigns[1] != m_bEdgeSigns[3] )
nRightV = GetRightEdgeVertex(xi,yi);
if ( m_bEdgeSigns[0] != m_bEdgeSigns[1] )
nTopV = GetTopEdgeVertex(xi,yi);
if ( m_bEdgeSigns[2] != m_bEdgeSigns[3] )
nBottomV = GetBottomEdgeVertex(xi,yi);
// evaluate "middle" decider case...
float fDecider = 0.0f;
if (nCase == 6 || nCase == 9)
fDecider = m_field.Value( (float)xi * m_fCellSize + m_fCellSize/2.0f + m_fXShift,
(float)yi*m_fCellSize + m_fCellSize/2.0f + m_fYShift );
int nSidesToPush = 0;
switch(nCase) {
case 1:
case 14:
m_stroke.AddEdge(nLeftV, nTopV);
nSidesToPush = (LEFT | TOP);
break;
case 2:
case 13:
m_stroke.AddEdge(nTopV, nRightV);
nSidesToPush = (RIGHT | TOP);
break;
case 4:
case 11:
m_stroke.AddEdge(nBottomV, nLeftV);
nSidesToPush = (LEFT | BOTTOM);
break;
case 7:
case 8:
m_stroke.AddEdge(nRightV, nBottomV);
nSidesToPush = (RIGHT | BOTTOM);
break;
case 3:
case 12:
m_stroke.AddEdge(nRightV, nLeftV);
nSidesToPush = (LEFT | RIGHT);
break;
case 5:
case 10:
m_stroke.AddEdge(nTopV, nBottomV);
nSidesToPush = (BOTTOM | TOP);
break;
case 9:
if (fDecider > m_fIsoValue) {
m_stroke.AddEdge(nLeftV,nBottomV);
m_stroke.AddEdge(nTopV,nRightV);
} else {
m_stroke.AddEdge(nLeftV, nTopV);
m_stroke.AddEdge(nBottomV, nRightV);
}
nSidesToPush = ALL;
break;
case 6:
if (fDecider > m_fIsoValue) {
m_stroke.AddEdge(nLeftV, nTopV);
m_stroke.AddEdge(nBottomV, nRightV);
} else {
m_stroke.AddEdge(nLeftV,nBottomV);
m_stroke.AddEdge(nTopV,nRightV);
}
nSidesToPush = ALL;
break;
}
// ?!??!?! WHY ARE TOP AND BOTTOM REVERSED ????!?!?!?!
// because the "Top" edge is the "y" edge, and the "Bottom" edge is the "y+1" edge.
// So when we want to push the quad "below" the "Bottom" edge, that (y+1), and
// the one "Above" the top edge is (y-1). Maybe rename?
if ((nSidesToPush & LEFT) != 0 && xi-1 >= 0 && m_cells[yi][xi-1].bTouched == false)
m_cellStack.Add( m_cells[yi][xi-1] );
if ((nSidesToPush & RIGHT) != 0 && xi+1 < m_nCells && m_cells[yi][xi+1].bTouched == false)
m_cellStack.Add( m_cells[yi][xi+1] );
if ((nSidesToPush & BOTTOM) != 0 && yi+1 < m_nCells && m_cells[yi+1][xi].bTouched == false)
m_cellStack.Add( m_cells[yi+1][xi] );
if ((nSidesToPush & TOP) != 0 && yi-1 >= 0 && m_cells[yi-1][xi].bTouched == false)
m_cellStack.Add( m_cells[yi-1][xi] );
return true;
}
// private members
void ResetCells() {
for (uint y = 0; y < m_cells.Length; ++y) {
for (uint x = 0; x < m_cells.Length; ++x) {
m_cells[y][x].bTouched = false;
m_cells[y][x].nLeftVertex = m_cells[y][x].nTopVertex = -1;
}
}
}
void InitializeCells() {
m_cells = new Cell[m_nCells + 1][];
for (uint y = 0; y < m_cells.Length; ++y) {
m_cells[y] = new Cell[m_nCells + 1];
for (uint x = 0; x < m_cells.Length; ++x) {
m_cells[y][x].Initialize(x,y);
}
}
}
void SetBounds( AxisAlignedBox2f bounds ) {
m_bounds = bounds;
m_fXShift = (bounds.Min.x < 0) ? bounds.Min.x : -bounds.Min.x;
m_fYShift = (bounds.Min.y < 0) ? bounds.Min.y : -bounds.Min.y;
m_fScale = (bounds.Width > bounds.Height) ? bounds.Width : bounds.Height;
m_fCellSize = m_fScale / m_nCells;
}
}
}