-
Notifications
You must be signed in to change notification settings - Fork 481
/
Copy pathpcm-iio.cpp
2323 lines (2094 loc) · 88.1 KB
/
pcm-iio.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: BSD-3-Clause
// Copyright (c) 2017-2022, Intel Corporation
// written by Patrick Lu,
// Aaron Cruz
// and others
#include "cpucounters.h"
#ifdef _MSC_VER
#include <windows.h>
#include "windows/windriver.h"
#else
#include <unistd.h>
#endif
#include <memory>
#include <fstream>
#include <stdlib.h>
#include <limits>
#include <stdexcept> // std::length_error
#include <cstdint>
#include <numeric>
#include <algorithm>
#include <set>
#ifdef _MSC_VER
#include "freegetopt/getopt.h"
#endif
#include "lspci.h"
#include "utils.h"
using namespace std;
using namespace pcm;
#define PCM_DELAY_DEFAULT 3.0 // in seconds
#define QAT_DID 0x18DA
#define NIS_DID 0x18D1
#define HQM_DID 0x270B
#define GRR_QAT_VRP_DID 0x5789 // Virtual Root Port to integrated QuickAssist (GRR QAT)
#define GRR_NIS_VRP_DID 0x5788 // VRP to Network Interface and Scheduler (GRR NIS)
#define ROOT_BUSES_OFFSET 0xCC
#define ROOT_BUSES_OFFSET_2 0xD0
#define SKX_SOCKETID_UBOX_DID 0x2014
#define SKX_UBOX_DEVICE_NUM 0x08
#define SKX_UBOX_FUNCTION_NUM 0x02
#define SKX_BUS_NUM_STRIDE 8
//the below LNID and GID applies to Skylake Server
#define SKX_UNC_SOCKETID_UBOX_LNID_OFFSET 0xC0
#define SKX_UNC_SOCKETID_UBOX_GID_OFFSET 0xD4
static const std::string iio_stack_names[6] = {
"IIO Stack 0 - CBDMA/DMI ",
"IIO Stack 1 - PCIe0 ",
"IIO Stack 2 - PCIe1 ",
"IIO Stack 3 - PCIe2 ",
"IIO Stack 4 - MCP0 ",
"IIO Stack 5 - MCP1 "
};
static const std::string skx_iio_stack_names[6] = {
"IIO Stack 0 - CBDMA/DMI ",
"IIO Stack 1 - PCIe0 ",
"IIO Stack 2 - PCIe1 ",
"IIO Stack 3 - PCIe2 ",
"IIO Stack 4 - MCP0 ",
"IIO Stack 5 - MCP1 "
};
static const std::string icx_iio_stack_names[6] = {
"IIO Stack 0 - PCIe0 ",
"IIO Stack 1 - PCIe1 ",
"IIO Stack 2 - MCP ",
"IIO Stack 3 - PCIe2 ",
"IIO Stack 4 - PCIe3 ",
"IIO Stack 5 - CBDMA/DMI "
};
static const std::string icx_d_iio_stack_names[6] = {
"IIO Stack 0 - MCP ",
"IIO Stack 1 - PCIe0 ",
"IIO Stack 2 - CBDMA/DMI ",
"IIO Stack 3 - PCIe2 ",
"IIO Stack 4 - PCIe3 ",
"IIO Stack 5 - PCIe1 "
};
static const std::string snr_iio_stack_names[5] = {
"IIO Stack 0 - QAT ",
"IIO Stack 1 - CBDMA/DMI ",
"IIO Stack 2 - NIS ",
"IIO Stack 3 - HQM ",
"IIO Stack 4 - PCIe "
};
#define ICX_CBDMA_DMI_SAD_ID 0
#define ICX_MCP_SAD_ID 3
#define ICX_PCH_PART_ID 0
#define ICX_CBDMA_PART_ID 3
#define SNR_ICX_SAD_CONTROL_CFG_OFFSET 0x3F4
#define SNR_ICX_MESH2IIO_MMAP_DID 0x09A2
#define ICX_VMD_PCI_DEVNO 0x00
#define ICX_VMD_PCI_FUNCNO 0x05
static const std::map<int, int> icx_sad_to_pmu_id_mapping = {
{ ICX_CBDMA_DMI_SAD_ID, 5 },
{ 1, 0 },
{ 2, 1 },
{ ICX_MCP_SAD_ID, 2 },
{ 4, 3 },
{ 5, 4 }
};
static const std::map<int, int> icx_d_sad_to_pmu_id_mapping = {
{ ICX_CBDMA_DMI_SAD_ID, 2 },
{ 1, 5 },
{ 2, 1 },
{ ICX_MCP_SAD_ID, 0 },
{ 4, 3 },
{ 5, 4 }
};
#define SNR_ACCELERATOR_PART_ID 4
#define SNR_ROOT_PORT_A_DID 0x334A
#define SNR_CBDMA_DMI_SAD_ID 0
#define SNR_PCIE_GEN3_SAD_ID 1
#define SNR_HQM_SAD_ID 2
#define SNR_NIS_SAD_ID 3
#define SNR_QAT_SAD_ID 4
static const std::map<int, int> snr_sad_to_pmu_id_mapping = {
{ SNR_CBDMA_DMI_SAD_ID, 1 },
{ SNR_PCIE_GEN3_SAD_ID, 4 },
{ SNR_HQM_SAD_ID , 3 },
{ SNR_NIS_SAD_ID , 2 },
{ SNR_QAT_SAD_ID , 0 }
};
#define HQMV2_DID 0x2710 // Hardware Queue Manager v2
#define HQMV25_DID 0x2714 // Hardware Queue Manager v2.5
#define DSA_DID 0x0b25 // Data Streaming Accelerator (DSA)
#define IAX_DID 0x0cfe // In-Memory Database Analytics Accelerator (IAX)
#define QATV2_DID 0x4940 // QuickAssist (CPM) v2
#define SPR_DMI_PART_ID 7
#define SPR_XCC_HQM_PART_ID 5
#define SPR_MCC_HQM_PART_ID 4
#define SPR_XCC_QAT_PART_ID 4
#define SPR_MCC_QAT_PART_ID 5
#define SPR_SAD_CONTROL_CFG_OFFSET SNR_ICX_SAD_CONTROL_CFG_OFFSET
#define SPR_PCU_CR3_DID 0x325b
#define SPR_PCU_CR3_REG_DEVICE 0x1e
#define SPR_PCU_CR3_REG_FUNCTION 0x03
#define SPR_CAPID4_OFFSET 0x94
#define SPR_CAPID4_GET_PHYSICAL_CHOP(capid4) ((capid4 >> 6) & 3)
#define SPR_PHYSICAL_CHOP_XCC 0b11
#define SPR_PHYSICAL_CHOP_MCC 0b01
#define SPR_XCC_DMI_PMON_ID 1
#define SPR_XCC_PCIE_GEN5_0_PMON_ID 2
#define SPR_XCC_PCIE_GEN5_1_PMON_ID 4
#define SPR_XCC_PCIE_GEN5_2_PMON_ID 6
#define SPR_XCC_PCIE_GEN5_3_PMON_ID 7
#define SPR_XCC_PCIE_GEN5_4_PMON_ID 9
#define SPR_XCC_IDX0_PMON_ID 0
#define SPR_XCC_IDX1_PMON_ID 3
#define SPR_XCC_IDX2_PMON_ID 5
#define SPR_XCC_IDX3_PMON_ID 8
const std::map<int, int> spr_xcc_sad_to_pmu_id_mapping = {
{ 0, SPR_XCC_DMI_PMON_ID },
{ 1, SPR_XCC_PCIE_GEN5_0_PMON_ID },
{ 2, SPR_XCC_PCIE_GEN5_1_PMON_ID },
{ 3, SPR_XCC_PCIE_GEN5_2_PMON_ID },
{ 4, SPR_XCC_PCIE_GEN5_3_PMON_ID },
{ 5, SPR_XCC_PCIE_GEN5_4_PMON_ID },
{ 8, SPR_XCC_IDX0_PMON_ID },
{ 9, SPR_XCC_IDX1_PMON_ID },
{ 10, SPR_XCC_IDX2_PMON_ID },
{ 11, SPR_XCC_IDX3_PMON_ID }
};
#define SPR_MCC_DMI_PMON_ID 10
#define SPR_MCC_PCIE_GEN5_0_PMON_ID 0 // assumption
#define SPR_MCC_PCIE_GEN5_1_PMON_ID 1
#define SPR_MCC_PCIE_GEN5_2_PMON_ID 2
#define SPR_MCC_PCIE_GEN5_3_PMON_ID 4 // assumption
#define SPR_MCC_PCIE_GEN5_4_PMON_ID 5
#define SPR_MCC_IDX0_PMON_ID 3
const std::map<int, int> spr_mcc_sad_to_pmu_id_mapping = {
{ 0, SPR_MCC_PCIE_GEN5_0_PMON_ID },
{ 1, SPR_MCC_PCIE_GEN5_1_PMON_ID },
{ 2, SPR_MCC_PCIE_GEN5_2_PMON_ID },
{ 3, SPR_MCC_DMI_PMON_ID },
{ 4, SPR_MCC_PCIE_GEN5_3_PMON_ID },
{ 5, SPR_MCC_PCIE_GEN5_4_PMON_ID },
{ 8, SPR_MCC_IDX0_PMON_ID },
};
static const std::string spr_xcc_iio_stack_names[] = {
"IIO Stack 0 - IDX0 ",
"IIO Stack 1 - DMI ",
"IIO Stack 2 - PCIe0 ",
"IIO Stack 3 - IDX1 ",
"IIO Stack 4 - PCIe1 ",
"IIO Stack 5 - IDX2 ",
"IIO Stack 6 - PCIe2 ",
"IIO Stack 7 - PCIe3",
"IIO Stack 8 - IDX3 ",
"IIO Stack 9 - PCIe4",
"IIO Stack 10 - NONE ",
"IIO Stack 11 - NONE ",
};
/*
* SPR MCC has 7 I/O stacks but PMON block for DMI has ID number 10.
* And just to follow such enumeration keep Stack 10 for DMI.
*/
static const std::string spr_mcc_iio_stack_names[] = {
"IIO Stack 0 - PCIe0 ",
"IIO Stack 1 - PCIe1 ",
"IIO Stack 2 - PCIe2 ",
"IIO Stack 3 - IDX0 ",
"IIO Stack 4 - PCIe3 ",
"IIO Stack 5 - PCIe4 ",
"IIO Stack 6 - NONE ",
"IIO Stack 7 - NONE ",
"IIO Stack 8 - NONE ",
"IIO Stack 9 - NONE ",
"IIO Stack 10 - DMI ",
};
// MS2IOSF stack IDs in CHA notation
#define GRR_PCH_DSA_GEN4_SAD_ID 0
#define GRR_DLB_SAD_ID 1
#define GRR_NIS_QAT_SAD_ID 2
#define GRR_PCH_DSA_GEN4_PMON_ID 2
#define GRR_DLB_PMON_ID 1
#define GRR_NIS_QAT_PMON_ID 0
// Stack 0 contains PCH, DSA and CPU PCIe Gen4 Complex
const std::map<int, int> grr_sad_to_pmu_id_mapping = {
{ GRR_PCH_DSA_GEN4_SAD_ID, GRR_PCH_DSA_GEN4_PMON_ID },
{ GRR_DLB_SAD_ID, GRR_DLB_PMON_ID },
{ GRR_NIS_QAT_SAD_ID, GRR_NIS_QAT_PMON_ID },
};
#define GRR_DLB_PART_ID 0
#define GRR_NIS_PART_ID 0
#define GRR_QAT_PART_ID 1
static const std::string grr_iio_stack_names[3] = {
"IIO Stack 0 - NIS/QAT ",
"IIO Stack 1 - HQM ",
"IIO Stack 2 - PCH/DSA/PCIe "
};
#define EMR_DMI_PMON_ID 7
#define EMR_PCIE_GEN5_0_PMON_ID 1
#define EMR_PCIE_GEN5_1_PMON_ID 2
#define EMR_PCIE_GEN5_2_PMON_ID 3
#define EMR_PCIE_GEN5_3_PMON_ID 8
#define EMR_PCIE_GEN5_4_PMON_ID 6
#define EMR_IDX0_PMON_ID 0
#define EMR_IDX1_PMON_ID 4
#define EMR_IDX2_PMON_ID 5
#define EMR_IDX3_PMON_ID 9
const std::map<int, int> emr_sad_to_pmu_id_mapping = {
{ 0, EMR_DMI_PMON_ID },
{ 1, EMR_PCIE_GEN5_0_PMON_ID },
{ 2, EMR_PCIE_GEN5_1_PMON_ID },
{ 3, EMR_PCIE_GEN5_2_PMON_ID },
{ 4, EMR_PCIE_GEN5_3_PMON_ID },
{ 5, EMR_PCIE_GEN5_4_PMON_ID },
{ 8, EMR_IDX0_PMON_ID },
{ 9, EMR_IDX1_PMON_ID },
{ 10, EMR_IDX2_PMON_ID },
{ 11, EMR_IDX3_PMON_ID }
};
static const std::string emr_iio_stack_names[] = {
"IIO Stack 0 - IDX0 ",
"IIO Stack 1 - PCIe3 ",
"IIO Stack 2 - PCIe0 ",
"IIO Stack 3 - IDX1 ",
"IIO Stack 4 - PCIe1 ",
"IIO Stack 5 - IDX2 ",
"IIO Stack 6 - PCIe2 ",
"IIO Stack 7 - DMI",
"IIO Stack 8 - IDX3 ",
"IIO Stack 9 - PCIe4",
"IIO Stack 10 - NONE ",
"IIO Stack 11 - NONE ",
};
enum EagleStreamPlatformStacks
{
esDMI = 0,
esPCIe0,
esPCIe1,
esPCIe2,
esPCIe3,
esPCIe4,
esDINO0,
esDINO1,
esDINO2,
esDINO3,
esEndOfList
};
const std::vector<int> spr_xcc_stacks_enumeration = {
/* esDMI */ SPR_XCC_DMI_PMON_ID,
/* esPCIe0 */ SPR_XCC_PCIE_GEN5_0_PMON_ID,
/* esPCIe1 */ SPR_XCC_PCIE_GEN5_1_PMON_ID,
/* esPCIe2 */ SPR_XCC_PCIE_GEN5_2_PMON_ID,
/* esPCIe3 */ SPR_XCC_PCIE_GEN5_3_PMON_ID,
/* esPCIe4 */ SPR_XCC_PCIE_GEN5_4_PMON_ID,
/* esDINO0 */ SPR_XCC_IDX0_PMON_ID,
/* esDINO1 */ SPR_XCC_IDX1_PMON_ID,
/* esDINO2 */ SPR_XCC_IDX2_PMON_ID,
/* esDINO3 */ SPR_XCC_IDX3_PMON_ID,
};
const std::vector<int> spr_mcc_stacks_enumeration = {
/* esDMI */ SPR_MCC_DMI_PMON_ID,
/* esPCIe0 */ SPR_MCC_PCIE_GEN5_0_PMON_ID,
/* esPCIe1 */ SPR_MCC_PCIE_GEN5_1_PMON_ID,
/* esPCIe2 */ SPR_MCC_PCIE_GEN5_2_PMON_ID,
/* esPCIe3 */ SPR_MCC_PCIE_GEN5_3_PMON_ID,
/* esPCIe4 */ SPR_MCC_PCIE_GEN5_4_PMON_ID,
/* esDINO0 */ SPR_MCC_IDX0_PMON_ID,
};
const std::vector<int> emr_stacks_enumeration = {
/* esDMI */ EMR_DMI_PMON_ID,
/* esPCIe0 */ EMR_PCIE_GEN5_0_PMON_ID,
/* esPCIe1 */ EMR_PCIE_GEN5_1_PMON_ID,
/* esPCIe2 */ EMR_PCIE_GEN5_2_PMON_ID,
/* esPCIe3 */ EMR_PCIE_GEN5_3_PMON_ID,
/* esPCIe4 */ EMR_PCIE_GEN5_4_PMON_ID,
/* esDINO0 */ EMR_IDX0_PMON_ID,
/* esDINO1 */ EMR_IDX1_PMON_ID,
/* esDINO2 */ EMR_IDX2_PMON_ID,
/* esDINO3 */ EMR_IDX3_PMON_ID,
};
enum class EagleStreamSupportedTypes
{
esInvalid = -1,
esSprXcc,
esSprMcc,
esEmrXcc
};
typedef EagleStreamSupportedTypes estype;
const std::map<estype, std::vector<int>> es_stacks_enumeration = {
{estype::esSprXcc, spr_xcc_stacks_enumeration},
{estype::esSprMcc, spr_mcc_stacks_enumeration},
{estype::esEmrXcc, emr_stacks_enumeration },
};
const std::map<estype, const std::string *> es_stack_names = {
{estype::esSprXcc, spr_xcc_iio_stack_names},
{estype::esSprMcc, spr_mcc_iio_stack_names},
{estype::esEmrXcc, emr_iio_stack_names },
};
const std::map<estype, std::map<int, int>> es_sad_to_pmu_id_mapping = {
{estype::esSprXcc, spr_xcc_sad_to_pmu_id_mapping},
{estype::esSprMcc, spr_mcc_sad_to_pmu_id_mapping},
{estype::esEmrXcc, emr_sad_to_pmu_id_mapping },
};
#define SRF_PE0_PMON_ID 3
#define SRF_PE1_PMON_ID 4
#define SRF_PE2_PMON_ID 2
#define SRF_PE3_PMON_ID 5
/*
* There are platform configuration when FlexUPI stacks (stacks 5 and 6) are enabled as
* PCIe stack and PCIe ports are disabled (ports 2 and 3) and vice sersa. See details here:
* In these cases the PMON IDs are different.
* So, defines with _FLEX_ are applicable for cases when FlexUPI stacks
* are working as PCIe ports.
*/
#define SRF_PE4_PMON_ID 11
#define SRF_FLEX_PE4_PMON_ID 13
#define SRF_PE5_PMON_ID 12
#define SRF_FLEX_PE5_PMON_ID 10
#define SRF_PE6_PMON_ID 0
#define SRF_PE7_PMON_ID 7
#define SRF_PE8_PMON_ID 8
#define SRF_HC0_PMON_ID 1
#define SRF_HC1_PMON_ID 6
#define SRF_HC2_PMON_ID 9
#define SRF_HC3_PMON_ID 14
#define SRF_PE0_SAD_BUS_ID 2
#define SRF_PE1_SAD_BUS_ID 3
#define SRF_PE2_SAD_BUS_ID 1
#define SRF_PE3_SAD_BUS_ID 4
#define SRF_PE4_SAD_BUS_ID 29
#define SRF_FLEX_PE4_SAD_BUS_ID SRF_PE4_SAD_BUS_ID
#define SRF_PE5_SAD_BUS_ID 26
#define SRF_FLEX_PE5_SAD_BUS_ID SRF_PE5_SAD_BUS_ID
#define SRF_PE6_SAD_BUS_ID 0 // UPI0
#define SRF_PE7_SAD_BUS_ID 5 // UPI1
#define SRF_PE8_SAD_BUS_ID 28 // UPI2
#define SRF_UBOXA_SAD_BUS_ID 30
#define SRF_UBOXB_SAD_BUS_ID 31
const std::set<int> srf_pcie_stacks({
SRF_PE0_SAD_BUS_ID,
SRF_PE1_SAD_BUS_ID,
SRF_PE2_SAD_BUS_ID,
SRF_PE3_SAD_BUS_ID,
SRF_PE4_SAD_BUS_ID,
SRF_FLEX_PE4_SAD_BUS_ID,
SRF_PE5_SAD_BUS_ID,
SRF_FLEX_PE5_SAD_BUS_ID,
SRF_PE6_SAD_BUS_ID,
SRF_PE7_SAD_BUS_ID,
SRF_PE8_SAD_BUS_ID,
});
#define SRF_HC0_SAD_BUS_ID 8
#define SRF_HC1_SAD_BUS_ID 12
#define SRF_HC2_SAD_BUS_ID 20
#define SRF_HC3_SAD_BUS_ID 16
const std::map<int, int> srf_sad_to_pmu_id_mapping = {
{ SRF_PE0_SAD_BUS_ID, SRF_PE0_PMON_ID },
{ SRF_PE1_SAD_BUS_ID, SRF_PE1_PMON_ID },
{ SRF_PE2_SAD_BUS_ID, SRF_PE2_PMON_ID },
{ SRF_PE3_SAD_BUS_ID, SRF_PE3_PMON_ID },
{ SRF_PE4_SAD_BUS_ID, SRF_PE4_PMON_ID },
{ SRF_FLEX_PE4_SAD_BUS_ID, SRF_FLEX_PE4_PMON_ID },
{ SRF_PE5_SAD_BUS_ID, SRF_PE5_PMON_ID },
{ SRF_FLEX_PE5_SAD_BUS_ID, SRF_FLEX_PE5_PMON_ID },
{ SRF_PE6_SAD_BUS_ID, SRF_PE6_PMON_ID },
{ SRF_PE7_SAD_BUS_ID, SRF_PE7_PMON_ID },
{ SRF_PE8_SAD_BUS_ID, SRF_PE8_PMON_ID },
{ SRF_HC0_SAD_BUS_ID, SRF_HC0_PMON_ID },
{ SRF_HC1_SAD_BUS_ID, SRF_HC1_PMON_ID },
{ SRF_HC2_SAD_BUS_ID, SRF_HC2_PMON_ID },
{ SRF_HC3_SAD_BUS_ID, SRF_HC3_PMON_ID },
};
#define SRF_DSA_IAX_PART_NUMBER 0
#define SRF_HQM_PART_NUMBER 5
#define SRF_QAT_PART_NUMBER 4
static const std::string srf_iio_stack_names[] = {
"IIO Stack 0 - PCIe6 ", // SRF_PE6_PMON_ID 0
"IIO Stack 1 - HCx0 ", // SRF_HC0_PMON_ID 1
"IIO Stack 2 - PCIe2 ", // SRF_PE2_PMON_ID 2
"IIO Stack 3 - PCIe0 ", // SRF_PE0_PMON_ID 3
"IIO Stack 4 - PCIe1 ", // SRF_PE1_PMON_ID 4
"IIO Stack 5 - PCIe3 ", // SRF_PE3_PMON_ID 5
"IIO Stack 6 - HCx1 ", // SRF_HC1_PMON_ID 6
"IIO Stack 7 - PCIe7 ", // SRF_PE7_PMON_ID 7
"IIO Stack 8 - PCIe8 ", // SRF_PE8_PMON_ID 8
"IIO Stack 9 - HCx3 ", // SRF_HC3_PMON_ID 9
"IIO Stack 10 - Flex PCIe5", // SRF_FLEX_PE5_PMON_ID 10
"IIO Stack 11 - PCIe4 ", // SRF_PE4_PMON_ID 11
"IIO Stack 12 - PCIe5 ", // SRF_PE5_PMON_ID 12
"IIO Stack 13 - Flex PCIe4", // SRF_FLEX_PE4_PMON_ID 13
"IIO Stack 14 - HCx2 ", // SRF_HC2_PMON_ID 14
};
const std::string generate_stack_str(const int unit)
{
static const std::string stack_str = "Stack ";
std::stringstream ss;
ss << stack_str << std::setw(2) << unit;
return ss.str();
}
struct iio_counter : public counter {
std::vector<result_content> data;
};
result_content results;
typedef struct
{
PCM *m;
iio_counter ctr;
vector<struct iio_counter> ctrs;
} iio_evt_parse_context;
vector<string> combine_stack_name_and_counter_names(string stack_name, const map<string,std::pair<h_id,std::map<string,v_id>>> &nameMap)
{
vector<string> v;
vector<string> tmp(nameMap.size());
v.push_back(stack_name);
for (std::map<string,std::pair<h_id,std::map<string,v_id>>>::const_iterator iunit = nameMap.begin(); iunit != nameMap.end(); ++iunit) {
string h_name = iunit->first;
int h_id = (iunit->second).first;
tmp[h_id] = h_name;
//cout << "h_id:" << h_id << " name:" << h_name << "\n";
}
//XXX: How to simplify and just combine tmp & v?
for (uint32_t i = 0; i < nameMap.size(); i++) {
v.push_back(tmp[i]);
}
return v;
}
string build_pci_header(const PCIDB & pciDB, uint32_t column_width, const struct pci &p, int part = -1, uint32_t level = 0)
{
string s = "|";
char bdf_buf[32];
char speed_buf[10];
char vid_did_buf[10];
char device_name_buf[128];
snprintf(bdf_buf, sizeof(bdf_buf), "%04X:%02X:%02X.%1d", p.bdf.domainno, p.bdf.busno, p.bdf.devno, p.bdf.funcno);
snprintf(speed_buf, sizeof(speed_buf), "Gen%1d x%-2d", p.link_speed, p.link_width);
snprintf(vid_did_buf, sizeof(vid_did_buf), "%04X:%04X", p.vendor_id, p.device_id);
snprintf(device_name_buf, sizeof(device_name_buf), "%s %s",
(pciDB.first.count(p.vendor_id) > 0)?pciDB.first.at(p.vendor_id).c_str():"unknown vendor",
(pciDB.second.count(p.vendor_id) > 0 && pciDB.second.at(p.vendor_id).count(p.device_id) > 0)?pciDB.second.at(p.vendor_id).at(p.device_id).c_str():"unknown device"
);
s += bdf_buf;
s += '|';
s += speed_buf;
s += '|';
s += vid_did_buf;
s += " ";
s += device_name_buf;
if (!p.parts_no.empty()) {
s += "; Part: ";
for (auto& part : p.parts_no) {
s += std::to_string(part) + ", ";
}
s += "\b\b ";
}
/* row with data */
if (part >= 0) {
s.insert(1,"P" + std::to_string(part) + " ");
s += std::string(column_width - (s.size()-1), ' ');
} else { /* row without data, just child pci device */
s.insert(0, std::string(4*level, ' '));
}
return s;
}
void build_pci_tree(vector<string> &buffer, const PCIDB & pciDB, uint32_t column_width, const struct pci &p, int part, uint32_t level = 0)
{
string row;
for (const auto& child : p.child_pci_devs) {
row = build_pci_header(pciDB, column_width, child, part, level);
buffer.push_back(row);
if (child.hasChildDevices())
build_pci_tree(buffer, pciDB, column_width, child, part, level + 1);
}
}
vector<string> build_display(vector<struct iio_stacks_on_socket>& iios, vector<struct iio_counter>& ctrs, const PCIDB& pciDB,
const map<string,std::pair<h_id,std::map<string,v_id>>> &nameMap)
{
vector<string> buffer;
vector<string> headers;
vector<struct data> data;
uint64_t header_width;
string row;
for (auto socket = iios.cbegin(); socket != iios.cend(); ++socket) {
buffer.push_back("Socket" + std::to_string(socket->socket_id));
for (auto stack = socket->stacks.cbegin(); stack != socket->stacks.cend(); ++stack) {
auto stack_id = stack->iio_unit_id;
headers = combine_stack_name_and_counter_names(stack->stack_name, nameMap);
//Print first row
row = std::accumulate(headers.begin(), headers.end(), string(" "), a_header_footer);
header_width = row.size();
buffer.push_back(row);
//Print a_title
row = std::accumulate(headers.begin(), headers.end(), string("|"), a_title);
buffer.push_back(row);
//Print deliminator
row = std::accumulate(headers.begin(), headers.end(), string("|"), a_header_footer);
buffer.push_back(row);
//Print data
std::map<uint32_t,map<uint32_t,struct iio_counter*>> v_sort;
//re-organize data collection to be row wise
for (std::vector<struct iio_counter>::iterator counter = ctrs.begin(); counter != ctrs.end(); ++counter) {
v_sort[counter->v_id][counter->h_id] = &(*counter);
}
for (std::map<uint32_t,map<uint32_t,struct iio_counter*>>::const_iterator vunit = v_sort.cbegin(); vunit != v_sort.cend(); ++vunit) {
map<uint32_t, struct iio_counter*> h_array = vunit->second;
uint32_t vv_id = vunit->first;
vector<uint64_t> h_data;
string v_name = h_array[0]->v_event_name;
for (map<uint32_t,struct iio_counter*>::const_iterator hunit = h_array.cbegin(); hunit != h_array.cend(); ++hunit) {
uint32_t hh_id = hunit->first;
uint64_t raw_data = hunit->second->data[0][socket->socket_id][stack_id][std::pair<h_id,v_id>(hh_id,vv_id)];
h_data.push_back(raw_data);
}
data = prepare_data(h_data, headers);
row = "| " + v_name;
row += string(abs(int(headers[0].size() - (row.size() - 1))), ' ');
row += std::accumulate(data.begin(), data.end(), string("|"), a_data);
buffer.push_back(row);
}
//Print deliminator
row = std::accumulate(headers.begin(), headers.end(), string("|"), a_header_footer);
buffer.push_back(row);
//Print pcie devices
for (const auto& part : stack->parts) {
uint8_t level = 1;
for (const auto& pci_device : part.child_pci_devs) {
row = build_pci_header(pciDB, (uint32_t)header_width, pci_device, -1, level);
buffer.push_back(row);
if (pci_device.hasChildDevices()) {
build_pci_tree(buffer, pciDB, (uint32_t)header_width, pci_device, -1, level + 1);
} else if (pci_device.header_type == 1) {
level++;
}
}
}
//Print footer
row = std::accumulate(headers.begin(), headers.end(), string(" "), a_header_footer);
buffer.push_back(row);
}
}
return buffer;
}
std::string get_root_port_dev(const bool show_root_port, int part_id, const pcm::iio_stack *stack)
{
char tmp[9] = " ";
std::string rp_pci;
if (!show_root_port)
return rp_pci;
for (auto part = stack->parts.begin(); part != stack->parts.end(); part = std::next(part))
{
if (part->part_id == part_id)
{
std::snprintf(tmp, sizeof(tmp), "%02x:%02x.%x", part->root_pci_dev.bdf.busno,
part->root_pci_dev.bdf.devno, part->root_pci_dev.bdf.funcno);
break;
}
}
rp_pci.append(tmp);
return rp_pci;
}
vector<string> build_csv(vector<struct iio_stacks_on_socket>& iios, vector<struct iio_counter>& ctrs,
const bool human_readable, const bool show_root_port, const std::string& csv_delimiter,
const map<string,std::pair<h_id,std::map<string,v_id>>> &nameMap)
{
vector<string> result;
vector<string> current_row;
auto header = combine_stack_name_and_counter_names("Part", nameMap);
header.insert(header.begin(), "Name");
if (show_root_port)
header.insert(header.begin(), "Root Port");
header.insert(header.begin(), "Socket");
auto insertDateTime = [&csv_delimiter](vector<string> & out, CsvOutputType type) {
std::string dateTime;
printDateForCSV(type, csv_delimiter, &dateTime);
// remove last delimiter
dateTime.pop_back();
out.insert(out.begin(), dateTime);
};
insertDateTime(header, CsvOutputType::Header2);
result.push_back(build_csv_row(header, csv_delimiter));
std::map<uint32_t,map<uint32_t,struct iio_counter*>> v_sort;
//re-organize data collection to be row wise
size_t max_name_width = 0;
for (std::vector<struct iio_counter>::iterator counter = ctrs.begin(); counter != ctrs.end(); ++counter) {
v_sort[counter->v_id][counter->h_id] = &(*counter);
max_name_width = (std::max)(max_name_width, counter->v_event_name.size());
}
for (auto socket = iios.cbegin(); socket != iios.cend(); ++socket) {
for (auto stack = socket->stacks.cbegin(); stack != socket->stacks.cend(); ++stack) {
const std::string socket_name = "Socket" + std::to_string(socket->socket_id);
std::string stack_name = stack->stack_name;
if (!human_readable) {
stack_name.erase(stack_name.find_last_not_of(' ') + 1);
}
const uint32_t stack_id = stack->iio_unit_id;
//Print data
int part_id;
std::map<uint32_t,map<uint32_t,struct iio_counter*>>::const_iterator vunit;
for (vunit = v_sort.cbegin(), part_id = 0;
vunit != v_sort.cend(); ++vunit, ++part_id) {
map<uint32_t, struct iio_counter*> h_array = vunit->second;
uint32_t vv_id = vunit->first;
vector<uint64_t> h_data;
string v_name = h_array[0]->v_event_name;
if (human_readable) {
v_name += string(max_name_width - (v_name.size()), ' ');
}
current_row.clear();
current_row.push_back(socket_name);
if (show_root_port) {
auto pci_dev = get_root_port_dev(show_root_port, part_id, &(*stack));
current_row.push_back(pci_dev);
}
current_row.push_back(stack_name);
current_row.push_back(v_name);
for (map<uint32_t,struct iio_counter*>::const_iterator hunit = h_array.cbegin(); hunit != h_array.cend(); ++hunit) {
uint32_t hh_id = hunit->first;
uint64_t raw_data = hunit->second->data[0][socket->socket_id][stack_id][std::pair<h_id,v_id>(hh_id,vv_id)];
current_row.push_back(human_readable ? unit_format(raw_data) : std::to_string(raw_data));
}
insertDateTime(current_row, CsvOutputType::Data);
result.push_back(build_csv_row(current_row, csv_delimiter));
}
}
}
return result;
}
class IPlatformMapping {
private:
uint32_t m_sockets;
uint32_t m_model;
protected:
void probeDeviceRange(std::vector<struct pci> &child_pci_devs, int domain, int secondary, int subordinate);
public:
IPlatformMapping(int cpu_model, uint32_t sockets_count) : m_sockets(sockets_count), m_model(cpu_model) {}
virtual ~IPlatformMapping() {};
static std::unique_ptr<IPlatformMapping> getPlatformMapping(int cpu_model, uint32_t sockets_count);
virtual bool pciTreeDiscover(std::vector<struct iio_stacks_on_socket>& iios) = 0;
uint32_t socketsCount() const { return m_sockets; }
uint32_t cpuId() const { return m_model; }
};
void IPlatformMapping::probeDeviceRange(std::vector<struct pci> &pci_devs, int domain, int secondary, int subordinate)
{
for (uint8_t bus = secondary; int(bus) <= subordinate; bus++) {
for (uint8_t device = 0; device < 32; device++) {
for (uint8_t function = 0; function < 8; function++) {
struct pci child_dev;
child_dev.bdf.domainno = domain;
child_dev.bdf.busno = bus;
child_dev.bdf.devno = device;
child_dev.bdf.funcno = function;
if (probe_pci(&child_dev)) {
if (secondary < child_dev.secondary_bus_number && subordinate < child_dev.subordinate_bus_number) {
probeDeviceRange(child_dev.child_pci_devs, domain, child_dev.secondary_bus_number, child_dev.subordinate_bus_number);
}
pci_devs.push_back(child_dev);
}
}
}
}
}
// Mapping for SkyLake Server.
class PurleyPlatformMapping: public IPlatformMapping {
private:
void getUboxBusNumbers(std::vector<uint32_t>& ubox);
public:
PurleyPlatformMapping(int cpu_model, uint32_t sockets_count) : IPlatformMapping(cpu_model, sockets_count) {}
~PurleyPlatformMapping() = default;
bool pciTreeDiscover(std::vector<struct iio_stacks_on_socket>& iios) override;
};
void PurleyPlatformMapping::getUboxBusNumbers(std::vector<uint32_t>& ubox)
{
for (uint16_t bus = 0; bus < 256; bus++) {
for (uint8_t device = 0; device < 32; device++) {
for (uint8_t function = 0; function < 8; function++) {
struct pci pci_dev;
pci_dev.bdf.busno = (uint8_t)bus;
pci_dev.bdf.devno = device;
pci_dev.bdf.funcno = function;
if (probe_pci(&pci_dev)) {
if (pci_dev.isIntelDevice() && (pci_dev.device_id == SKX_SOCKETID_UBOX_DID)) {
ubox.push_back(bus);
}
}
}
}
}
}
bool PurleyPlatformMapping::pciTreeDiscover(std::vector<struct iio_stacks_on_socket>& iios)
{
std::vector<uint32_t> ubox;
getUboxBusNumbers(ubox);
if (ubox.empty()) {
cerr << "UBOXs were not found! Program aborted" << endl;
return false;
}
for (uint32_t socket_id = 0; socket_id < socketsCount(); socket_id++) {
if (!PciHandleType::exists(0, ubox[socket_id], SKX_UBOX_DEVICE_NUM, SKX_UBOX_FUNCTION_NUM)) {
cerr << "No access to PCICFG\n" << endl;
return false;
}
uint64 cpubusno = 0;
struct iio_stacks_on_socket iio_on_socket;
iio_on_socket.socket_id = socket_id;
PciHandleType h(0, ubox[socket_id], SKX_UBOX_DEVICE_NUM, SKX_UBOX_FUNCTION_NUM);
h.read64(ROOT_BUSES_OFFSET, &cpubusno);
iio_on_socket.stacks.reserve(6);
for (int stack_id = 0; stack_id < 6; stack_id++) {
struct iio_stack stack;
stack.iio_unit_id = stack_id;
stack.busno = (uint8_t)(cpubusno >> (stack_id * SKX_BUS_NUM_STRIDE));
stack.stack_name = skx_iio_stack_names[stack_id];
for (uint8_t part_id = 0; part_id < 4; part_id++) {
struct iio_bifurcated_part part;
part.part_id = part_id;
struct pci *pci = &part.root_pci_dev;
struct bdf *bdf = &pci->bdf;
bdf->busno = stack.busno;
bdf->devno = part_id;
bdf->funcno = 0;
/* This is a workaround to catch some IIO stack does not exist */
if (stack_id != 0 && stack.busno == 0) {
pci->exist = false;
}
else if (probe_pci(pci)) {
/* FIXME: for 0:0.0, we may need to scan from secondary switch down; lgtm [cpp/fixme-comment] */
for (uint8_t bus = pci->secondary_bus_number; bus <= pci->subordinate_bus_number; bus++) {
for (uint8_t device = 0; device < 32; device++) {
for (uint8_t function = 0; function < 8; function++) {
struct pci child_pci_dev;
child_pci_dev.bdf.busno = bus;
child_pci_dev.bdf.devno = device;
child_pci_dev.bdf.funcno = function;
if (probe_pci(&child_pci_dev)) {
part.child_pci_devs.push_back(child_pci_dev);
}
}
}
}
}
stack.parts.push_back(part);
}
iio_on_socket.stacks.push_back(stack);
}
iios.push_back(iio_on_socket);
}
return true;
}
class IPlatformMapping10Nm: public IPlatformMapping {
private:
public:
IPlatformMapping10Nm(int cpu_model, uint32_t sockets_count) : IPlatformMapping(cpu_model, sockets_count) {}
~IPlatformMapping10Nm() = default;
bool getSadIdRootBusMap(uint32_t socket_id, std::map<uint8_t, uint8_t>& sad_id_bus_map);
};
bool IPlatformMapping10Nm::getSadIdRootBusMap(uint32_t socket_id, std::map<uint8_t, uint8_t>& sad_id_bus_map)
{
for (uint16_t bus = 0; bus < 256; bus++) {
for (uint8_t device = 0; device < 32; device++) {
for (uint8_t function = 0; function < 8; function++) {
struct pci pci_dev;
pci_dev.bdf.busno = (uint8_t)bus;
pci_dev.bdf.devno = device;
pci_dev.bdf.funcno = function;
if (probe_pci(&pci_dev) && pci_dev.isIntelDevice() && (pci_dev.device_id == SNR_ICX_MESH2IIO_MMAP_DID)) {
PciHandleType h(0, bus, device, function);
std::uint32_t sad_ctrl_cfg;
h.read32(SNR_ICX_SAD_CONTROL_CFG_OFFSET, &sad_ctrl_cfg);
if (sad_ctrl_cfg == (std::numeric_limits<uint32_t>::max)()) {
cerr << "Could not read SAD_CONTROL_CFG" << endl;
return false;
}
if ((sad_ctrl_cfg & 0xf) == socket_id) {
uint8_t sid = (sad_ctrl_cfg >> 4) & 0x7;
sad_id_bus_map.insert(std::pair<uint8_t, uint8_t>(sid, (uint8_t)bus));
}
}
}
}
}
if (sad_id_bus_map.empty()) {
cerr << "Could not find Root Port bus numbers" << endl;
return false;
}
return true;
}
// Mapping for IceLake Server.
class WhitleyPlatformMapping: public IPlatformMapping10Nm {
private:
const bool icx_d;
const std::map<int, int>& sad_to_pmu_id_mapping;
const std::string * iio_stack_names;
public:
WhitleyPlatformMapping(int cpu_model, uint32_t sockets_count) : IPlatformMapping10Nm(cpu_model, sockets_count),
icx_d(PCM::getInstance()->getCPUFamilyModelFromCPUID() == PCM::ICX_D),
sad_to_pmu_id_mapping(icx_d ? icx_d_sad_to_pmu_id_mapping : icx_sad_to_pmu_id_mapping),
iio_stack_names(icx_d ? icx_d_iio_stack_names : icx_iio_stack_names)
{
}
~WhitleyPlatformMapping() = default;
bool pciTreeDiscover(std::vector<struct iio_stacks_on_socket>& iios) override;
};
bool WhitleyPlatformMapping::pciTreeDiscover(std::vector<struct iio_stacks_on_socket>& iios)
{
for (uint32_t socket = 0; socket < socketsCount(); socket++) {
struct iio_stacks_on_socket iio_on_socket;
iio_on_socket.socket_id = socket;
std::map<uint8_t, uint8_t> sad_id_bus_map;
if (!getSadIdRootBusMap(socket, sad_id_bus_map)) {
return false;
}
{
struct iio_stack stack;
stack.iio_unit_id = sad_to_pmu_id_mapping.at(ICX_MCP_SAD_ID);
stack.stack_name = iio_stack_names[stack.iio_unit_id];
iio_on_socket.stacks.push_back(stack);
}
for (auto sad_id_bus_pair = sad_id_bus_map.cbegin(); sad_id_bus_pair != sad_id_bus_map.cend(); ++sad_id_bus_pair) {
int sad_id = sad_id_bus_pair->first;
if (sad_to_pmu_id_mapping.find(sad_id) ==
sad_to_pmu_id_mapping.end()) {
cerr << "Unknown SAD ID: " << sad_id << endl;
return false;
}
if (sad_id == ICX_MCP_SAD_ID) {
continue;
}
struct iio_stack stack;
int root_bus = sad_id_bus_pair->second;
if (sad_id == ICX_CBDMA_DMI_SAD_ID) {
// There is one DMA Controller on each socket
stack.iio_unit_id = sad_to_pmu_id_mapping.at(sad_id);
stack.busno = root_bus;
stack.stack_name = iio_stack_names[stack.iio_unit_id];
// PCH is on socket 0 only
if (socket == 0) {
struct iio_bifurcated_part pch_part;
struct pci *pci = &pch_part.root_pci_dev;
struct bdf *bdf = &pci->bdf;
pch_part.part_id = ICX_PCH_PART_ID;
bdf->busno = root_bus;
bdf->devno = 0x00;
bdf->funcno = 0x00;
if (probe_pci(pci)) {
// Probe child devices only under PCH part.
for (uint8_t bus = pci->secondary_bus_number; bus <= pci->subordinate_bus_number; bus++) {
for (uint8_t device = 0; device < 32; device++) {
for (uint8_t function = 0; function < 8; function++) {
struct pci child_pci_dev;
child_pci_dev.bdf.busno = bus;
child_pci_dev.bdf.devno = device;
child_pci_dev.bdf.funcno = function;
if (probe_pci(&child_pci_dev)) {
pch_part.child_pci_devs.push_back(child_pci_dev);
}
}
}
}
stack.parts.push_back(pch_part);
}
}
struct iio_bifurcated_part part;
part.part_id = ICX_CBDMA_PART_ID;
struct pci *pci = &part.root_pci_dev;
struct bdf *bdf = &pci->bdf;