forked from lemunozm/message-io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode.rs
606 lines (536 loc) · 22.6 KB
/
node.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
use crate::network::{self, NetworkController, NetworkProcessor, NetEvent, Endpoint, ResourceId};
use crate::events::{self, EventSender, EventReceiver};
use crate::util::thread::{NamespacedThread, OTHER_THREAD_ERR};
use std::sync::{
Arc, Mutex,
atomic::{AtomicBool, Ordering},
};
use std::time::{Duration};
use std::collections::{VecDeque};
lazy_static::lazy_static! {
static ref SAMPLING_TIMEOUT: Duration = Duration::from_millis(50);
}
/// Event returned by [`NodeListener::for_each()`] and [`NodeListener::for_each_async()`]
/// when some network event or signal is received.
pub enum NodeEvent<'a, S> {
/// The `NodeEvent` is an event that comes from the network.
/// See [`NetEvent`] to know about the different network events.
Network(NetEvent<'a>),
/// The `NodeEvent` is a signal.
/// A signal is an event produced by the own node to itself.
/// You can send signals with timers or priority.
/// See [`EventSender`] to know about how to send signals.
Signal(S),
}
impl<'a, S: std::fmt::Debug> std::fmt::Debug for NodeEvent<'a, S> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
NodeEvent::Network(net_event) => write!(f, "NodeEvent::Network({net_event:?})"),
NodeEvent::Signal(signal) => write!(f, "NodeEvent::Signal({signal:?})"),
}
}
}
impl<'a, S> NodeEvent<'a, S> {
/// Assume the event is a [`NodeEvent::Network`], panics if not.
pub fn network(self) -> NetEvent<'a> {
match self {
NodeEvent::Network(net_event) => net_event,
NodeEvent::Signal(..) => panic!("NodeEvent must be a NetEvent"),
}
}
/// Assume the event is a [`NodeEvent::Signal`], panics if not.
pub fn signal(self) -> S {
match self {
NodeEvent::Network(..) => panic!("NodeEvent must be a Signal"),
NodeEvent::Signal(signal) => signal,
}
}
}
/// Analogous to [`NodeEvent`] but without reference the data.
/// This kind of event is dispatched by `NodeListener::to_event_queue()`.
/// It is useful when you need to move an [`NodeEvent`]
#[derive(Clone)]
pub enum StoredNodeEvent<S> {
/// The `StoredNodeEvent` is an event that comes from the network.
/// See [`NetEvent`] to know about the different network events.
Network(StoredNetEvent),
/// The `StoredNodeEvent` is a signal.
/// A signal is an event produced by the own node to itself.
/// You can send signals with timers or priority.
/// See [`EventSender`] to know about how to send signals.
Signal(S),
}
impl<S: std::fmt::Debug> std::fmt::Debug for StoredNodeEvent<S> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
StoredNodeEvent::Network(net_event) => write!(f, "NodeEvent::Network({net_event:?})"),
StoredNodeEvent::Signal(signal) => write!(f, "NodeEvent::Signal({signal:?})"),
}
}
}
impl<S> StoredNodeEvent<S> {
/// Assume the event is a [`StoredNodeEvent::Network`], panics if not.
pub fn network(self) -> StoredNetEvent {
match self {
StoredNodeEvent::Network(net_event) => net_event,
StoredNodeEvent::Signal(..) => panic!("NodeEvent must be a NetEvent"),
}
}
/// Assume the event is a [`StoredNodeEvent::Signal`], panics if not.
pub fn signal(self) -> S {
match self {
StoredNodeEvent::Network(..) => panic!("NodeEvent must be a Signal"),
StoredNodeEvent::Signal(signal) => signal,
}
}
}
impl<S> From<NodeEvent<'_, S>> for StoredNodeEvent<S> {
fn from(node_event: NodeEvent<'_, S>) -> Self {
match node_event {
NodeEvent::Network(net_event) => StoredNodeEvent::Network(net_event.into()),
NodeEvent::Signal(signal) => StoredNodeEvent::Signal(signal),
}
}
}
/// Analogous to [`NetEvent`] but with static lifetime (without reference the data).
/// This kind of event is dispatched by `NodeListener::to_event_queue()`
/// and can be easily stored in any container.
#[derive(Debug, Clone)]
pub enum StoredNetEvent {
Connected(Endpoint, bool),
Accepted(Endpoint, ResourceId),
Message(Endpoint, Vec<u8>),
Disconnected(Endpoint),
}
impl From<NetEvent<'_>> for StoredNetEvent {
fn from(net_event: NetEvent<'_>) -> Self {
match net_event {
NetEvent::Connected(endpoint, status) => Self::Connected(endpoint, status),
NetEvent::Accepted(endpoint, id) => Self::Accepted(endpoint, id),
NetEvent::Message(endpoint, data) => Self::Message(endpoint, Vec::from(data)),
NetEvent::Disconnected(endpoint) => Self::Disconnected(endpoint),
}
}
}
impl StoredNetEvent {
/// Use this `StoredNetEvent` as a `NetEvent` referencing its data.
pub fn borrow(&self) -> NetEvent<'_> {
match self {
Self::Connected(endpoint, status) => NetEvent::Connected(*endpoint, *status),
Self::Accepted(endpoint, id) => NetEvent::Accepted(*endpoint, *id),
Self::Message(endpoint, data) => NetEvent::Message(*endpoint, data),
Self::Disconnected(endpoint) => NetEvent::Disconnected(*endpoint),
}
}
}
/// Creates a node already working.
/// This function offers two instances: a [`NodeHandler`] to perform network and signals actions
/// and a [`NodeListener`] to receive the events the node receives.
///
/// Note that [`NodeListener`] is already listen for events from its creation.
/// In order to get the listened events you can call [`NodeListener::for_each()`]
/// Any event happened before `for_each()` call will be also dispatched.
///
/// # Examples
/// ```rust
/// use message_io::node::{self, NodeEvent};
///
/// enum Signal {
/// Close,
/// Tick,
/// //Other signals here.
/// }
///
/// let (handler, listener) = node::split();
///
/// handler.signals().send_with_timer(Signal::Close, std::time::Duration::from_secs(1));
///
/// listener.for_each(move |event| match event {
/// NodeEvent::Network(_) => { /* ... */ },
/// NodeEvent::Signal(signal) => match signal {
/// Signal::Close => handler.stop(), //Received after 1 sec
/// Signal::Tick => { /* ... */ },
/// },
/// });
/// ```
///
/// In case you don't use signals, specify the node type with an unit (`()`) type.
/// ```
/// use message_io::node::{self};
///
/// let (handler, listener) = node::split::<()>();
/// ```
pub fn split<S: Send>() -> (NodeHandler<S>, NodeListener<S>) {
let (network_controller, network_processor) = network::split();
let (signal_sender, signal_receiver) = events::split();
let running = AtomicBool::new(true);
let handler = NodeHandler(Arc::new(NodeHandlerImpl {
network: network_controller,
signals: signal_sender,
running,
}));
let listener = NodeListener::new(network_processor, signal_receiver, handler.clone());
(handler, listener)
}
struct NodeHandlerImpl<S> {
network: NetworkController,
signals: EventSender<S>,
running: AtomicBool,
}
/// A shareable and clonable entity that allows to deal with
/// the network, send signals and stop the node.
pub struct NodeHandler<S>(Arc<NodeHandlerImpl<S>>);
impl<S> NodeHandler<S> {
/// Returns a reference to the NetworkController to deal with the network.
/// See [`NetworkController`]
pub fn network(&self) -> &NetworkController {
&self.0.network
}
/// Returns a reference to the EventSender to send signals to the node.
/// Signals are events that the node send to itself useful in situation where you need
/// to "wake up" the [`NodeListener`] to perform some action.
/// See [`EventSender`].
pub fn signals(&self) -> &EventSender<S> {
&self.0.signals
}
/// Finalizes the [`NodeListener`].
/// After this call, no more events will be processed by [`NodeListener::for_each()`].
pub fn stop(&self) {
self.0.running.store(false, Ordering::Relaxed);
}
/// Check if the node is running.
/// Note that the node is running and listening events from its creation,
/// not only once you call to [`NodeListener::for_each()`].
pub fn is_running(&self) -> bool {
self.0.running.load(Ordering::Relaxed)
}
}
impl<S: Send + 'static> Clone for NodeHandler<S> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
/// Listen events for network and signal events.
pub struct NodeListener<S: Send + 'static> {
network_cache_thread: NamespacedThread<(NetworkProcessor, VecDeque<StoredNetEvent>)>,
cache_running: Arc<AtomicBool>,
signal_receiver: EventReceiver<S>,
handler: NodeHandler<S>,
}
impl<S: Send + 'static> NodeListener<S> {
fn new(
mut network_processor: NetworkProcessor,
signal_receiver: EventReceiver<S>,
handler: NodeHandler<S>,
) -> NodeListener<S> {
// Spawn the network thread to be able to perform correctly any network action before
// for_each() call. Any generated event would be cached and offered to the user when they
// call for_each().
let cache_running = Arc::new(AtomicBool::new(true));
let network_cache_thread = {
let cache_running = cache_running.clone();
let mut cache = VecDeque::new();
NamespacedThread::spawn("node-network-cache-thread", move || {
while cache_running.load(Ordering::Relaxed) {
network_processor.process_poll_event(Some(*SAMPLING_TIMEOUT), |net_event| {
log::trace!("Cached {:?}", net_event);
cache.push_back(net_event.into());
});
}
(network_processor, cache)
})
};
NodeListener { network_cache_thread, cache_running, signal_receiver, handler }
}
/// Iterate indefinitely over all generated `NetEvent`.
/// This function will work until [`NodeHandler::stop()`] is called.
///
/// Note that any events generated before calling this function (e.g. some connection was done)
/// will be stored and offered once you call `for_each()`.
/// # Example
/// ```
/// use message_io::node::{self, NodeEvent};
/// use message_io::network::Transport;
///
/// let (handler, listener) = node::split();
/// handler.signals().send_with_timer((), std::time::Duration::from_secs(1));
/// let (id, addr) = handler.network().listen(Transport::FramedTcp, "127.0.0.1:0").unwrap();
///
/// listener.for_each(move |event| match event {
/// NodeEvent::Network(net_event) => { /* Your logic here */ },
/// NodeEvent::Signal(_) => handler.stop(),
/// });
/// // Blocked here until handler.stop() is called (1 sec).
/// println!("Node is stopped");
/// ```
pub fn for_each(mut self, mut event_callback: impl FnMut(NodeEvent<S>)) {
// Stop cache events
self.cache_running.store(false, Ordering::Relaxed);
let (mut network_processor, mut cache) = self.network_cache_thread.join();
// Dispatch the catched events first.
while let Some(event) = cache.pop_front() {
let net_event = event.borrow();
log::trace!("Read from cache {:?}", net_event);
event_callback(NodeEvent::Network(net_event));
if !self.handler.is_running() {
return
}
}
crossbeam_utils::thread::scope(|scope| {
let multiplexed = Arc::new(Mutex::new(event_callback));
let _signal_thread = {
let mut signal_receiver = std::mem::take(&mut self.signal_receiver);
let handler = self.handler.clone();
// This struct is used to allow passing the no sendable event_callback
// into the signal thread.
// It is safe because the thread are scoped and the callback is managed by a lock,
// so only one call is performed at the same time.
// It implies that any object moved into the callback do not have
// any concurrence issues.
#[allow(clippy::type_complexity)]
struct SendableEventCallback<'a, S>(Arc<Mutex<dyn FnMut(NodeEvent<S>) + 'a>>);
#[allow(clippy::non_send_fields_in_send_ty)]
unsafe impl<'a, S> Send for SendableEventCallback<'a, S> {}
let multiplexed = SendableEventCallback(multiplexed.clone());
scope
.builder()
.name(String::from("node-network-thread"))
.spawn(move |_| {
while handler.is_running() {
if let Some(signal) = signal_receiver.receive_timeout(*SAMPLING_TIMEOUT)
{
let mut event_callback =
multiplexed.0.lock().expect(OTHER_THREAD_ERR);
if handler.is_running() {
event_callback(NodeEvent::Signal(signal));
}
}
}
})
.unwrap()
};
while self.handler.is_running() {
network_processor.process_poll_event(Some(*SAMPLING_TIMEOUT), |net_event| {
let mut event_callback = multiplexed.lock().expect(OTHER_THREAD_ERR);
if self.handler.is_running() {
event_callback(NodeEvent::Network(net_event));
}
});
}
})
.unwrap();
}
/// Similar to [`NodeListener::for_each()`] but it returns the control to the user
/// after calling it. The events will be processed asynchronously.
/// A `NodeTask` representing this asynchronous job is returned.
/// Destroying this object will result in blocking the current thread until
/// [`NodeHandler::stop()`] is called.
///
/// In order to allow the node working asynchronously, you can move the `NodeTask` to a
/// an object with a longer lifetime.
///
/// # Example
/// ```
/// use message_io::node::{self, NodeEvent};
/// use message_io::network::Transport;
///
/// let (handler, listener) = node::split();
/// handler.signals().send_with_timer((), std::time::Duration::from_secs(1));
/// let (id, addr) = handler.network().listen(Transport::FramedTcp, "127.0.0.1:0").unwrap();
///
/// let task = listener.for_each_async(move |event| match event {
/// NodeEvent::Network(net_event) => { /* Your logic here */ },
/// NodeEvent::Signal(_) => handler.stop(),
/// });
/// // for_each_async() will act asynchronous during 'task' lifetime.
///
/// // ...
/// println!("Node is running");
/// // ...
///
/// drop(task); // Blocked here until handler.stop() is called (1 sec).
/// // Also task.wait(); can be called doing the same (but taking a mutable reference).
///
/// println!("Node is stopped");
/// ```
pub fn for_each_async(
mut self,
event_callback: impl FnMut(NodeEvent<S>) + Send + 'static,
) -> NodeTask {
// Stop cache events
self.cache_running.store(false, Ordering::Relaxed);
let (mut network_processor, mut cache) = self.network_cache_thread.join();
let multiplexed = Arc::new(Mutex::new(event_callback));
// To avoid processing stops while the node is configuring,
// the user callback locked until the function ends.
let _locked = multiplexed.lock().expect(OTHER_THREAD_ERR);
let network_thread = {
let multiplexed = multiplexed.clone();
let handler = self.handler.clone();
NamespacedThread::spawn("node-network-thread", move || {
while let Some(event) = cache.pop_front() {
let net_event = event.borrow();
log::trace!("Read from cache {:?}", net_event);
let mut event_callback = multiplexed.lock().expect(OTHER_THREAD_ERR);
event_callback(NodeEvent::Network(net_event));
if !handler.is_running() {
return
}
}
while handler.is_running() {
network_processor.process_poll_event(Some(*SAMPLING_TIMEOUT), |net_event| {
let mut event_callback = multiplexed.lock().expect(OTHER_THREAD_ERR);
if handler.is_running() {
event_callback(NodeEvent::Network(net_event));
}
});
}
})
};
let signal_thread = {
let multiplexed = multiplexed.clone();
let mut signal_receiver = std::mem::take(&mut self.signal_receiver);
let handler = self.handler.clone();
NamespacedThread::spawn("node-signal-thread", move || {
while handler.is_running() {
if let Some(signal) = signal_receiver.receive_timeout(*SAMPLING_TIMEOUT) {
let mut event_callback = multiplexed.lock().expect(OTHER_THREAD_ERR);
if handler.is_running() {
event_callback(NodeEvent::Signal(signal));
}
}
}
})
};
NodeTask { network_thread, signal_thread }
}
/// Consumes the listener to create a `NodeTask` and an `EventReceiver` where the events
/// of this node will be sent.
/// The events will be sent to the `EventReceiver` during the `NodeTask` lifetime.
/// The aim of this method is to offer a synchronous way of working with a *node*,
/// without using a clousure.
/// This easier API management has a performance cost.
/// Compared to [`NodeListener::for_each()`], this function adds latency because the
/// node event must be copied and no longer reference data from the internal socket buffer.
///
/// # Example
/// ```
/// use message_io::node::{self, StoredNodeEvent as NodeEvent};
/// use message_io::network::Transport;
///
/// let (handler, listener) = node::split();
/// handler.signals().send_with_timer((), std::time::Duration::from_secs(1));
/// let (id, addr) = handler.network().listen(Transport::FramedTcp, "127.0.0.1:0").unwrap();
///
/// let (task, mut receiver) = listener.enqueue();
///
/// loop {
/// match receiver.receive() {
/// NodeEvent::Network(net_event) => { /* Your logic here */ },
/// NodeEvent::Signal(_) => break handler.stop(),
/// }
/// }
/// ```
pub fn enqueue(self) -> (NodeTask, EventReceiver<StoredNodeEvent<S>>) {
let (sender, receiver) = events::split::<StoredNodeEvent<S>>();
let task = self.for_each_async(move |node_event| sender.send(node_event.into()));
(task, receiver)
}
}
impl<S: Send + 'static> Drop for NodeListener<S> {
fn drop(&mut self) {
self.cache_running.store(false, Ordering::Relaxed);
}
}
/// Entity used to ensure the lifetime of [`NodeListener::for_each_async()`] call.
/// The node will process events asynchronously while this entity lives.
/// The destruction of this entity will block until the task is finished.
/// If you want to "unblock" the thread that drops this entity call to
/// [`NodeHandler::stop()`] before or from another thread.
#[must_use = "The NodeTask must be used or the asynchronous task will be dropped in return"]
pub struct NodeTask {
network_thread: NamespacedThread<()>,
signal_thread: NamespacedThread<()>,
}
impl NodeTask {
/// Block the current thread until the task finalizes.
/// Similar to call `drop(node_task)` but more verbose and without take the ownership.
/// To finalize the task call [`NodeHandler::stop()`].
/// Calling `wait()` over an already finished task do not block.
pub fn wait(&mut self) {
self.network_thread.try_join();
self.signal_thread.try_join();
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::time::{Duration};
#[test]
fn create_node_and_drop() {
let (handler, _listener) = split::<()>();
assert!(handler.is_running());
// listener dropped here.
}
#[test]
fn sync_node() {
let (handler, listener) = split();
assert!(handler.is_running());
handler.signals().send_with_timer((), Duration::from_millis(1000));
let inner_handler = handler.clone();
listener.for_each(move |_| inner_handler.stop());
assert!(!handler.is_running());
}
#[test]
fn async_node() {
let (handler, listener) = split();
assert!(handler.is_running());
handler.signals().send_with_timer("check", Duration::from_millis(250));
let checked = Arc::new(AtomicBool::new(false));
let inner_checked = checked.clone();
let inner_handler = handler.clone();
let _node_task = listener.for_each_async(move |event| match event.signal() {
"stop" => inner_handler.stop(),
"check" => inner_checked.store(true, Ordering::Relaxed),
_ => unreachable!(),
});
// Since here `NodeTask` is living, the node is considered running.
assert!(handler.is_running());
std::thread::sleep(Duration::from_millis(500));
assert!(checked.load(Ordering::Relaxed));
assert!(handler.is_running());
handler.signals().send("stop");
}
#[test]
fn enqueue() {
let (handler, listener) = split();
assert!(handler.is_running());
handler.signals().send_with_timer((), Duration::from_millis(1000));
let (mut task, mut receiver) = listener.enqueue();
assert!(handler.is_running());
receiver.receive_timeout(Duration::from_millis(2000)).unwrap().signal();
handler.stop();
assert!(!handler.is_running());
task.wait();
}
#[test]
fn wait_task() {
let (handler, listener) = split();
handler.signals().send_with_timer((), Duration::from_millis(1000));
let inner_handler = handler.clone();
listener.for_each_async(move |_| inner_handler.stop()).wait();
assert!(!handler.is_running());
}
#[test]
fn wait_already_waited_task() {
let (handler, listener) = split();
handler.signals().send_with_timer((), Duration::from_millis(1000));
let inner_handler = handler.clone();
let mut task = listener.for_each_async(move |_| inner_handler.stop());
assert!(handler.is_running());
task.wait();
assert!(!handler.is_running());
task.wait();
assert!(!handler.is_running());
}
}