forked from openai/openai-agents-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfake_model.py
118 lines (103 loc) · 3.73 KB
/
fake_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from __future__ import annotations
from collections.abc import AsyncIterator
from openai.types.responses import Response, ResponseCompletedEvent
from agents.agent_output import AgentOutputSchema
from agents.handoffs import Handoff
from agents.items import (
ModelResponse,
TResponseInputItem,
TResponseOutputItem,
TResponseStreamEvent,
)
from agents.model_settings import ModelSettings
from agents.models.interface import Model, ModelTracing
from agents.tool import Tool
from agents.tracing import SpanError, generation_span
from agents.usage import Usage
class FakeModel(Model):
def __init__(
self,
tracing_enabled: bool = False,
initial_output: list[TResponseOutputItem] | Exception | None = None,
):
if initial_output is None:
initial_output = []
self.turn_outputs: list[list[TResponseOutputItem] | Exception] = (
[initial_output] if initial_output else []
)
self.tracing_enabled = tracing_enabled
def set_next_output(self, output: list[TResponseOutputItem] | Exception):
self.turn_outputs.append(output)
def add_multiple_turn_outputs(self, outputs: list[list[TResponseOutputItem] | Exception]):
self.turn_outputs.extend(outputs)
def get_next_output(self) -> list[TResponseOutputItem] | Exception:
if not self.turn_outputs:
return []
return self.turn_outputs.pop(0)
async def get_response(
self,
system_instructions: str | None,
input: str | list[TResponseInputItem],
model_settings: ModelSettings,
tools: list[Tool],
output_schema: AgentOutputSchema | None,
handoffs: list[Handoff],
tracing: ModelTracing,
) -> ModelResponse:
with generation_span(disabled=not self.tracing_enabled) as span:
output = self.get_next_output()
if isinstance(output, Exception):
span.set_error(
SpanError(
message="Error",
data={
"name": output.__class__.__name__,
"message": str(output),
},
)
)
raise output
return ModelResponse(
output=output,
usage=Usage(),
referenceable_id=None,
)
async def stream_response(
self,
system_instructions: str | None,
input: str | list[TResponseInputItem],
model_settings: ModelSettings,
tools: list[Tool],
output_schema: AgentOutputSchema | None,
handoffs: list[Handoff],
tracing: ModelTracing,
) -> AsyncIterator[TResponseStreamEvent]:
with generation_span(disabled=not self.tracing_enabled) as span:
output = self.get_next_output()
if isinstance(output, Exception):
span.set_error(
SpanError(
message="Error",
data={
"name": output.__class__.__name__,
"message": str(output),
},
)
)
raise output
yield ResponseCompletedEvent(
type="response.completed",
response=get_response_obj(output),
)
def get_response_obj(output: list[TResponseOutputItem], response_id: str | None = None) -> Response:
return Response(
id=response_id or "123",
created_at=123,
model="test_model",
object="response",
output=output,
tool_choice="none",
tools=[],
top_p=None,
parallel_tool_calls=False,
)