forked from openai/openai-agents-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_function_schema.py
430 lines (322 loc) · 14.3 KB
/
test_function_schema.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from enum import Enum
from typing import Any, Literal
import pytest
from pydantic import BaseModel, ValidationError
from typing_extensions import TypedDict
from agents import RunContextWrapper
from agents.exceptions import UserError
from agents.function_schema import function_schema
def no_args_function():
"""This function has no args."""
return "ok"
def test_no_args_function():
func_schema = function_schema(no_args_function)
assert func_schema.params_json_schema.get("title") == "no_args_function_args"
assert func_schema.description == "This function has no args."
assert not func_schema.takes_context
parsed = func_schema.params_pydantic_model()
args, kwargs_dict = func_schema.to_call_args(parsed)
result = no_args_function(*args, **kwargs_dict)
assert result == "ok"
def no_args_function_with_context(ctx: RunContextWrapper[str]):
return "ok"
def test_no_args_function_with_context() -> None:
func_schema = function_schema(no_args_function_with_context)
assert func_schema.takes_context
context = RunContextWrapper(context="test")
parsed = func_schema.params_pydantic_model()
args, kwargs_dict = func_schema.to_call_args(parsed)
result = no_args_function_with_context(context, *args, **kwargs_dict)
assert result == "ok"
def simple_function(a: int, b: int = 5):
"""
Args:
a: The first argument
b: The second argument
Returns:
The sum of a and b
"""
return a + b
def test_simple_function():
"""Test a function that has simple typed parameters and defaults."""
func_schema = function_schema(simple_function)
# Check that the JSON schema is a dictionary with title, type, etc.
assert isinstance(func_schema.params_json_schema, dict)
assert func_schema.params_json_schema.get("title") == "simple_function_args"
assert (
func_schema.params_json_schema.get("properties", {}).get("a").get("description")
== "The first argument"
)
assert (
func_schema.params_json_schema.get("properties", {}).get("b").get("description")
== "The second argument"
)
assert not func_schema.takes_context
# Valid input
valid_input = {"a": 3}
parsed = func_schema.params_pydantic_model(**valid_input)
args_tuple, kwargs_dict = func_schema.to_call_args(parsed)
result = simple_function(*args_tuple, **kwargs_dict)
assert result == 8 # 3 + 5
# Another valid input
valid_input2 = {"a": 3, "b": 10}
parsed2 = func_schema.params_pydantic_model(**valid_input2)
args_tuple2, kwargs_dict2 = func_schema.to_call_args(parsed2)
result2 = simple_function(*args_tuple2, **kwargs_dict2)
assert result2 == 13 # 3 + 10
# Invalid input: 'a' must be int
with pytest.raises(ValidationError):
func_schema.params_pydantic_model(**{"a": "not an integer"})
def varargs_function(x: int, *numbers: float, flag: bool = False, **kwargs: Any):
return x, numbers, flag, kwargs
def test_varargs_function():
"""Test a function that uses *args and **kwargs."""
func_schema = function_schema(varargs_function)
# Check JSON schema structure
assert isinstance(func_schema.params_json_schema, dict)
assert func_schema.params_json_schema.get("title") == "varargs_function_args"
# Valid input including *args in 'numbers' and **kwargs in 'kwargs'
valid_input = {
"x": 10,
"numbers": [1.1, 2.2, 3.3],
"flag": True,
"kwargs": {"extra1": "hello", "extra2": 42},
}
parsed = func_schema.params_pydantic_model(**valid_input)
args, kwargs_dict = func_schema.to_call_args(parsed)
result = varargs_function(*args, **kwargs_dict)
# result should be (10, (1.1, 2.2, 3.3), True, {"extra1": "hello", "extra2": 42})
assert result[0] == 10
assert result[1] == (1.1, 2.2, 3.3)
assert result[2] is True
assert result[3] == {"extra1": "hello", "extra2": 42}
# Missing 'x' should raise error
with pytest.raises(ValidationError):
func_schema.params_pydantic_model(**{"numbers": [1.1, 2.2]})
# 'flag' can be omitted because it has a default
valid_input_no_flag = {"x": 7, "numbers": [9.9], "kwargs": {"some_key": "some_value"}}
parsed2 = func_schema.params_pydantic_model(**valid_input_no_flag)
args2, kwargs_dict2 = func_schema.to_call_args(parsed2)
result2 = varargs_function(*args2, **kwargs_dict2)
# result2 should be (7, (9.9,), False, {'some_key': 'some_value'})
assert result2 == (7, (9.9,), False, {"some_key": "some_value"})
class Foo(TypedDict):
a: int
b: str
class InnerModel(BaseModel):
a: int
b: str
class OuterModel(BaseModel):
inner: InnerModel
foo: Foo
def complex_args_function(model: OuterModel) -> str:
return f"{model.inner.a}, {model.inner.b}, {model.foo['a']}, {model.foo['b']}"
def test_nested_data_function():
func_schema = function_schema(complex_args_function)
assert isinstance(func_schema.params_json_schema, dict)
assert func_schema.params_json_schema.get("title") == "complex_args_function_args"
# Valid input
model = OuterModel(inner=InnerModel(a=1, b="hello"), foo=Foo(a=2, b="world"))
valid_input = {
"model": model.model_dump(),
}
parsed = func_schema.params_pydantic_model(**valid_input)
args, kwargs_dict = func_schema.to_call_args(parsed)
result = complex_args_function(*args, **kwargs_dict)
assert result == "1, hello, 2, world"
def complex_args_and_docs_function(model: OuterModel, some_flag: int = 0) -> str:
"""
This function takes a model and a flag, and returns a string.
Args:
model: A model with an inner and foo field
some_flag: An optional flag with a default of 0
Returns:
A string with the values of the model and flag
"""
return f"{model.inner.a}, {model.inner.b}, {model.foo['a']}, {model.foo['b']}, {some_flag or 0}"
def test_complex_args_and_docs_function():
func_schema = function_schema(complex_args_and_docs_function)
assert isinstance(func_schema.params_json_schema, dict)
assert func_schema.params_json_schema.get("title") == "complex_args_and_docs_function_args"
# Check docstring is parsed correctly
properties = func_schema.params_json_schema.get("properties", {})
assert properties.get("model").get("description") == "A model with an inner and foo field"
assert properties.get("some_flag").get("description") == "An optional flag with a default of 0"
# Valid input
model = OuterModel(inner=InnerModel(a=1, b="hello"), foo=Foo(a=2, b="world"))
valid_input = {
"model": model.model_dump(),
}
parsed = func_schema.params_pydantic_model(**valid_input)
args, kwargs_dict = func_schema.to_call_args(parsed)
result = complex_args_and_docs_function(*args, **kwargs_dict)
assert result == "1, hello, 2, world, 0"
# Invalid input: 'some_flag' must be int
with pytest.raises(ValidationError):
func_schema.params_pydantic_model(
**{"model": model.model_dump(), "some_flag": "not an int"}
)
# Valid input: 'some_flag' can be omitted because it has a default
valid_input_no_flag = {"model": model.model_dump()}
parsed2 = func_schema.params_pydantic_model(**valid_input_no_flag)
args2, kwargs_dict2 = func_schema.to_call_args(parsed2)
result2 = complex_args_and_docs_function(*args2, **kwargs_dict2)
assert result2 == "1, hello, 2, world, 0"
def function_with_context(ctx: RunContextWrapper[str], a: int, b: int = 5):
return a + b
def test_function_with_context():
func_schema = function_schema(function_with_context)
assert func_schema.takes_context
context = RunContextWrapper(context="test")
input = {"a": 1, "b": 2}
parsed = func_schema.params_pydantic_model(**input)
args, kwargs_dict = func_schema.to_call_args(parsed)
result = function_with_context(context, *args, **kwargs_dict)
assert result == 3
class MyClass:
def foo(self, a: int, b: int = 5):
return a + b
def foo_ctx(self, ctx: RunContextWrapper[str], a: int, b: int = 5):
return a + b
@classmethod
def bar(cls, a: int, b: int = 5):
return a + b
@classmethod
def bar_ctx(cls, ctx: RunContextWrapper[str], a: int, b: int = 5):
return a + b
@staticmethod
def baz(a: int, b: int = 5):
return a + b
@staticmethod
def baz_ctx(ctx: RunContextWrapper[str], a: int, b: int = 5):
return a + b
def test_class_based_functions():
context = RunContextWrapper(context="test")
# Instance method
instance = MyClass()
func_schema = function_schema(instance.foo)
assert isinstance(func_schema.params_json_schema, dict)
assert func_schema.params_json_schema.get("title") == "foo_args"
input = {"a": 1, "b": 2}
parsed = func_schema.params_pydantic_model(**input)
args, kwargs_dict = func_schema.to_call_args(parsed)
result = instance.foo(*args, **kwargs_dict)
assert result == 3
# Instance method with context
func_schema = function_schema(instance.foo_ctx)
assert isinstance(func_schema.params_json_schema, dict)
assert func_schema.params_json_schema.get("title") == "foo_ctx_args"
assert func_schema.takes_context
input = {"a": 1, "b": 2}
parsed = func_schema.params_pydantic_model(**input)
args, kwargs_dict = func_schema.to_call_args(parsed)
result = instance.foo_ctx(context, *args, **kwargs_dict)
assert result == 3
# Class method
func_schema = function_schema(MyClass.bar)
assert isinstance(func_schema.params_json_schema, dict)
assert func_schema.params_json_schema.get("title") == "bar_args"
input = {"a": 1, "b": 2}
parsed = func_schema.params_pydantic_model(**input)
args, kwargs_dict = func_schema.to_call_args(parsed)
result = MyClass.bar(*args, **kwargs_dict)
assert result == 3
# Class method with context
func_schema = function_schema(MyClass.bar_ctx)
assert isinstance(func_schema.params_json_schema, dict)
assert func_schema.params_json_schema.get("title") == "bar_ctx_args"
assert func_schema.takes_context
input = {"a": 1, "b": 2}
parsed = func_schema.params_pydantic_model(**input)
args, kwargs_dict = func_schema.to_call_args(parsed)
result = MyClass.bar_ctx(context, *args, **kwargs_dict)
assert result == 3
# Static method
func_schema = function_schema(MyClass.baz)
assert isinstance(func_schema.params_json_schema, dict)
assert func_schema.params_json_schema.get("title") == "baz_args"
input = {"a": 1, "b": 2}
parsed = func_schema.params_pydantic_model(**input)
args, kwargs_dict = func_schema.to_call_args(parsed)
result = MyClass.baz(*args, **kwargs_dict)
assert result == 3
# Static method with context
func_schema = function_schema(MyClass.baz_ctx)
assert isinstance(func_schema.params_json_schema, dict)
assert func_schema.params_json_schema.get("title") == "baz_ctx_args"
assert func_schema.takes_context
input = {"a": 1, "b": 2}
parsed = func_schema.params_pydantic_model(**input)
args, kwargs_dict = func_schema.to_call_args(parsed)
result = MyClass.baz_ctx(context, *args, **kwargs_dict)
assert result == 3
class MyEnum(str, Enum):
FOO = "foo"
BAR = "bar"
BAZ = "baz"
def enum_and_literal_function(a: MyEnum, b: Literal["a", "b", "c"]) -> str:
return f"{a.value} {b}"
def test_enum_and_literal_function():
func_schema = function_schema(enum_and_literal_function)
assert isinstance(func_schema.params_json_schema, dict)
assert func_schema.params_json_schema.get("title") == "enum_and_literal_function_args"
# Check that the enum values are included in the JSON schema
assert func_schema.params_json_schema.get("$defs", {}).get("MyEnum", {}).get("enum") == [
"foo",
"bar",
"baz",
]
# Check that the enum is expressed as a def
assert (
func_schema.params_json_schema.get("properties", {}).get("a", {}).get("$ref")
== "#/$defs/MyEnum"
)
# Check that the literal values are included in the JSON schema
assert func_schema.params_json_schema.get("properties", {}).get("b", {}).get("enum") == [
"a",
"b",
"c",
]
# Valid input
valid_input = {"a": "foo", "b": "a"}
parsed = func_schema.params_pydantic_model(**valid_input)
args, kwargs_dict = func_schema.to_call_args(parsed)
result = enum_and_literal_function(*args, **kwargs_dict)
assert result == "foo a"
# Invalid input: 'a' must be a valid enum value
with pytest.raises(ValidationError):
func_schema.params_pydantic_model(**{"a": "not an enum value", "b": "a"})
# Invalid input: 'b' must be a valid literal value
with pytest.raises(ValidationError):
func_schema.params_pydantic_model(**{"a": "foo", "b": "not a literal value"})
def test_run_context_in_non_first_position_raises_value_error():
# When a parameter (after the first) is annotated as RunContextWrapper,
# function_schema() should raise a UserError.
def func(a: int, context: RunContextWrapper) -> None:
pass
with pytest.raises(UserError):
function_schema(func, use_docstring_info=False)
def test_var_positional_tuple_annotation():
# When a function has a var-positional parameter annotated with a tuple type,
# function_schema() should convert it into a field with type List[<tuple-element>].
def func(*args: tuple[int, ...]) -> int:
total = 0
for arg in args:
total += sum(arg)
return total
fs = function_schema(func, use_docstring_info=False)
properties = fs.params_json_schema.get("properties", {})
assert properties.get("args").get("type") == "array"
assert properties.get("args").get("items").get("type") == "integer"
def test_var_keyword_dict_annotation():
# Case 3:
# When a function has a var-keyword parameter annotated with a dict type,
# function_schema() should convert it into a field with type Dict[<key>, <value>].
def func(**kwargs: dict[str, int]):
return kwargs
fs = function_schema(func, use_docstring_info=False)
properties = fs.params_json_schema.get("properties", {})
# The name of the field is "kwargs", and it's a JSON object i.e. a dict.
assert properties.get("kwargs").get("type") == "object"
# The values in the dict are integers.
assert properties.get("kwargs").get("additionalProperties").get("type") == "integer"