forked from openai/openai-agents-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_openai_responses_converter.py
205 lines (177 loc) · 8.3 KB
/
test_openai_responses_converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright (c) OpenAI
#
# Licensed under the MIT License.
# See LICENSE file in the project root for full license information.
"""
Unit tests for the `Converter` class defined in
`agents.models.openai_responses`. The converter is responsible for
translating various agent tool types and output schemas into the parameter
structures expected by the OpenAI Responses API.
We test the following aspects:
- `convert_tool_choice` correctly maps high-level tool choice strings into
the tool choice values accepted by the Responses API, including special types
like `file_search` and `web_search`, and falling back to function names
for arbitrary string values.
- `get_response_format` returns `openai.NOT_GIVEN` for plain-text response
formats and an appropriate format dict when a JSON-structured output schema
is provided.
- `convert_tools` maps our internal `Tool` dataclasses into the appropriate
request payloads and includes list, and enforces constraints like at most
one `ComputerTool`.
"""
import pytest
from openai import NOT_GIVEN
from pydantic import BaseModel
from agents import (
Agent,
AgentOutputSchema,
Computer,
ComputerTool,
FileSearchTool,
Handoff,
Tool,
UserError,
WebSearchTool,
function_tool,
handoff,
)
from agents.models.openai_responses import Converter
def test_convert_tool_choice_standard_values():
"""
Make sure that the standard tool_choice values map to themselves or
to "auto"/"required"/"none" as appropriate, and that special string
values map to the appropriate dicts.
"""
assert Converter.convert_tool_choice(None) is NOT_GIVEN
assert Converter.convert_tool_choice("auto") == "auto"
assert Converter.convert_tool_choice("required") == "required"
assert Converter.convert_tool_choice("none") == "none"
# Special tool types are represented as dicts of type only.
assert Converter.convert_tool_choice("file_search") == {"type": "file_search"}
assert Converter.convert_tool_choice("web_search_preview") == {"type": "web_search_preview"}
assert Converter.convert_tool_choice("computer_use_preview") == {"type": "computer_use_preview"}
# Arbitrary string should be interpreted as a function name.
assert Converter.convert_tool_choice("my_function") == {
"type": "function",
"name": "my_function",
}
def test_get_response_format_plain_text_and_json_schema():
"""
For plain text output (default, or output type of `str`), the converter
should return NOT_GIVEN, indicating no special response format constraint.
If an output schema is provided for a structured type, the converter
should return a `format` dict with the schema and strictness. The exact
JSON schema depends on the output type; we just assert that required
keys are present and that we get back the original schema.
"""
# Default output (None) should be considered plain text.
assert Converter.get_response_format(None) is NOT_GIVEN
# An explicit plain-text schema (str) should also yield NOT_GIVEN.
assert Converter.get_response_format(AgentOutputSchema(str)) is NOT_GIVEN
# A model-based schema should produce a format dict.
class OutModel(BaseModel):
foo: int
bar: str
out_schema = AgentOutputSchema(OutModel)
fmt = Converter.get_response_format(out_schema)
assert isinstance(fmt, dict)
assert "format" in fmt
inner = fmt["format"]
assert inner.get("type") == "json_schema"
assert inner.get("name") == "final_output"
assert isinstance(inner.get("schema"), dict)
# Should include a strict flag matching the schema's strictness setting.
assert inner.get("strict") == out_schema.strict_json_schema
def test_convert_tools_basic_types_and_includes():
"""
Construct a variety of tool types and make sure `convert_tools` returns
a matching list of tool param dicts and the expected includes. Also
check that only a single computer tool is allowed.
"""
# Simple function tool
tool_fn = function_tool(lambda a: "x", name_override="fn")
# File search tool with include_search_results set
file_tool = FileSearchTool(
max_num_results=3, vector_store_ids=["vs1"], include_search_results=True
)
# Web search tool with custom params
web_tool = WebSearchTool(user_location=None, search_context_size="high")
# Dummy computer tool subclassing the Computer ABC with minimal methods.
class DummyComputer(Computer):
@property
def environment(self):
return "mac"
@property
def dimensions(self):
return (800, 600)
def screenshot(self) -> str:
raise NotImplementedError
def click(self, x: int, y: int, button: str) -> None:
raise NotImplementedError
def double_click(self, x: int, y: int) -> None:
raise NotImplementedError
def scroll(self, x: int, y: int, scroll_x: int, scroll_y: int) -> None:
raise NotImplementedError
def type(self, text: str) -> None:
raise NotImplementedError
def wait(self) -> None:
raise NotImplementedError
def move(self, x: int, y: int) -> None:
raise NotImplementedError
def keypress(self, keys: list[str]) -> None:
raise NotImplementedError
def drag(self, path: list[tuple[int, int]]) -> None:
raise NotImplementedError
# Wrap our concrete computer in a ComputerTool for conversion.
comp_tool = ComputerTool(computer=DummyComputer())
tools: list[Tool] = [tool_fn, file_tool, web_tool, comp_tool]
converted = Converter.convert_tools(tools, handoffs=[])
assert isinstance(converted.tools, list)
assert isinstance(converted.includes, list)
# The includes list should have exactly the include for file search when include_search_results
# is True.
assert converted.includes == ["file_search_call.results"]
# There should be exactly four converted tool dicts.
assert len(converted.tools) == 4
# Extract types and verify.
types = [ct["type"] for ct in converted.tools]
assert "function" in types
assert "file_search" in types
assert "web_search_preview" in types
assert "computer_use_preview" in types
# Verify file search tool contains max_num_results and vector_store_ids
file_params = next(ct for ct in converted.tools if ct["type"] == "file_search")
assert file_params.get("max_num_results") == file_tool.max_num_results
assert file_params.get("vector_store_ids") == file_tool.vector_store_ids
# Verify web search tool contains user_location and search_context_size
web_params = next(ct for ct in converted.tools if ct["type"] == "web_search_preview")
assert web_params.get("user_location") == web_tool.user_location
assert web_params.get("search_context_size") == web_tool.search_context_size
# Verify computer tool contains environment and computed dimensions
comp_params = next(ct for ct in converted.tools if ct["type"] == "computer_use_preview")
assert comp_params.get("environment") == "mac"
assert comp_params.get("display_width") == 800
assert comp_params.get("display_height") == 600
# The function tool dict should have name and description fields.
fn_params = next(ct for ct in converted.tools if ct["type"] == "function")
assert fn_params.get("name") == tool_fn.name
assert fn_params.get("description") == tool_fn.description
# Only one computer tool should be allowed.
with pytest.raises(UserError):
Converter.convert_tools(tools=[comp_tool, comp_tool], handoffs=[])
def test_convert_tools_includes_handoffs():
"""
When handoff objects are included, `convert_tools` should append their
tool param dicts after tools and include appropriate descriptions.
"""
agent = Agent(name="support", handoff_description="Handles support")
handoff_obj = handoff(agent)
converted = Converter.convert_tools(tools=[], handoffs=[handoff_obj])
assert isinstance(converted.tools, list)
assert len(converted.tools) == 1
handoff_tool = converted.tools[0]
assert handoff_tool.get("type") == "function"
assert handoff_tool.get("name") == Handoff.default_tool_name(agent)
assert handoff_tool.get("description") == Handoff.default_tool_description(agent)
# No includes for handoffs by default.
assert converted.includes == []