-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtrain.py
227 lines (199 loc) · 8.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Copyright (c) Alibaba, Inc. and its affiliates.
import argparse
import os
import shutil
from typing import Optional, Union
import yaml
from modelscope.hub.file_download import http_get_file
from modelscope.utils.config import Config
from modelscope.utils.torch_utils import set_random_seed
from adaseq.commands.subcommand import Subcommand
from adaseq.data.data_collators.base import build_data_collator
from adaseq.data.dataset_manager import DatasetManager
from adaseq.data.preprocessors.nlp_preprocessor import build_preprocessor
from adaseq.metainfo import Trainers
from adaseq.training import build_trainer
from adaseq.utils.checks import ConfigurationError
from adaseq.utils.common_utils import create_datetime_str, has_keys
from adaseq.utils.constant import DEMO_CONFIG
from adaseq.utils.file_utils import is_empty_dir
from adaseq.utils.logging import prepare_logging
from adaseq.utils.yaml import read_yaml
class Train(Subcommand):
"""
usage: adaseq train [-h] -c CONFIG_PATH [-w WORK_DIR] [-n RUN_NAME] [-f FORCE]
[-ckpt CHECKPOINT_PATH] [--seed SEED] [-d DEVICE]
[--use_fp16] [--local_rank LOCAL_RANK]
optional arguments:
-h, --help show this help message and exit
-c CONFIG_PATH, --config_path CONFIG_PATH
configuration YAML file
-w WORK_DIR, --work_dir WORK_DIR
directory to save experiment logs and checkpoints
-n RUN_NAME, --run_name RUN_NAME
trial name
-f FORCE, --force FORCE
overwrite the output directory if it exists.
-ckpt CHECKPOINT_PATH, --checkpoint_path CHECKPOINT_PATH
model checkpoint to load
--seed SEED random seed for everything
-d DEVICE, --device DEVICE
device name
--use_fp16 whether to use mixed precision
--local_rank LOCAL_RANK
"""
@classmethod
def add_subparser(cls, parser: argparse._SubParsersAction) -> argparse.ArgumentParser:
"""Add training arguments parser"""
subparser = parser.add_parser('train', help='train a model')
subparser.add_argument(
'-c', '--config_path', type=str, required=True, help='configuration YAML file'
)
subparser.add_argument(
'-w',
'--work_dir',
type=str,
default=None,
help='directory to save experiment logs and checkpoints',
)
subparser.add_argument('-n', '--run_name', type=str, default=None, help='trial name')
subparser.add_argument(
'-f', '--force', default=None, help='overwrite the output directory if it exists.'
)
subparser.add_argument(
'-ckpt', '--checkpoint_path', default=None, help='model checkpoint to load'
)
subparser.add_argument('--seed', type=int, default=None, help='random seed for everything')
subparser.add_argument('-d', '--device', type=str, default='gpu', help='device name')
subparser.add_argument(
'--use_fp16', action='store_true', help='whether to use mixed precision'
)
subparser.add_argument('--local_rank', type=str, default='0')
subparser.set_defaults(func=train_model_from_args)
return subparser
def train_model_from_args(args: argparse.Namespace): # noqa: D103
train_model(
config_path_or_dict=args.config_path,
work_dir=args.work_dir,
run_name=args.run_name,
force=args.force,
seed=args.seed,
device=args.device,
use_fp16=args.use_fp16,
local_rank=args.local_rank,
checkpoint_path=args.checkpoint_path,
)
def train_model(
config_path_or_dict: Union[str, dict],
work_dir: Optional[str] = None,
run_name: Optional[str] = None,
force: bool = False,
seed: Optional[int] = None,
device: str = 'gpu',
use_fp16: bool = False,
local_rank: str = '0',
checkpoint_path: Optional[str] = None,
) -> None:
"""
Train a model from config file or dict.
You can manually call this function in a python script for debugging.
"""
if isinstance(config_path_or_dict, str):
demo_config = 'demo.yaml'
if config_path_or_dict == demo_config and not os.path.isfile(config_path_or_dict):
http_get_file(DEMO_CONFIG, '.', demo_config, None)
config = Config.from_file(config_path_or_dict)
else:
config = Config(config_path_or_dict)
# create work_dir
if work_dir is None:
work_dir = os.path.join(
config.safe_get('experiment.exp_dir', 'experiments/'),
config.safe_get('experiment.exp_name', 'unknown/'),
run_name or create_datetime_str(),
)
if os.path.exists(work_dir) and force:
shutil.rmtree(work_dir, ignore_errors=True)
if os.path.exists(work_dir) and not is_empty_dir(work_dir):
raise ConfigurationError(f'`work_dir` ({work_dir}) already exists and is not empty.')
os.makedirs(work_dir, exist_ok=True)
world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
prepare_logging(work_dir, int(local_rank), world_size)
# Get seed from the comand line args first.
if seed is None:
# if not given, try to get one from config file
seed = config.safe_get('experiment.seed', 42) # 42 by default
if seed < 0:
raise ConfigurationError(f'random seed must be greater than 0, got: {seed}')
else:
config['experiment']['seed'] = seed
set_random_seed(seed)
# A stupid implementation to reload config with `envyaml`
new_config_path = os.path.join(work_dir, 'config.yaml')
with open(new_config_path, mode='w', encoding='utf8') as file:
yaml.dump(config.to_dict(), file, allow_unicode=True)
parsed = read_yaml(new_config_path)
with open(new_config_path, mode='w', encoding='utf8') as file:
yaml.dump(parsed, file, allow_unicode=True)
config = Config.from_file(new_config_path)
trainer = build_trainer_from_partial_objects(
config,
work_dir=work_dir,
seed=seed,
device=device,
use_fp16=use_fp16,
local_rank=local_rank,
)
trainer.train(checkpoint_path)
trainer.test()
def build_trainer_from_partial_objects(config, work_dir, **kwargs):
"""
Entrypoint of build the trainer from `config` by modelscope.
In this method, we will build the `DatasetManager` first, then use the
counted or loaded `labels` to build the`Preprocessor`.
The the`Preprocessor` will provide the final `id_to_label` mapping,
which is a required argument of all `AdaSeq` models, we update it to the
`model` section of `config` and dump the updated `config` to the `work_dir`.
Args:
work_dir (`str`): required
The created directionary to save all produced files in training.
config (`Config`): required
The `Config` of this trial.
"""
# build datasets via `DatasetManager`
dm = DatasetManager.from_config(task=config.task, **config.dataset)
# reuse embedder's model_dir in preprocessor
if 'model_dir' not in config.preprocessor:
assert has_keys(
config, 'model', 'embedder', 'model_name_or_path'
), 'model.embedder.model_name_or_path is required when preprocessor.model_dir is not set'
config.preprocessor.model_dir = config.model.embedder.model_name_or_path
# build preprocessor with config and labels
preprocessor = build_preprocessor(config.preprocessor, labels=dm.labels)
if 'lr_scheduler' not in config.train: # default constant lr.
config.train['lr_scheduler'] = dict(type='constant')
# finally, get `id_to_label` for model.
config.model.id_to_label = preprocessor.id_to_label
# TODO: remove this in the future
if hasattr(preprocessor, 'typing_id_to_label') and hasattr(preprocessor, 'ident_id_to_label'):
config.model.typing_id_to_label = preprocessor.typing_id_to_label
config.model.ident_id_to_label = preprocessor.ident_id_to_label
# Dump config to work_dir and reload.
new_config_path = os.path.join(work_dir, 'config.yaml')
with open(new_config_path, mode='w', encoding='utf8') as file:
yaml.dump(config.to_dict(), file, allow_unicode=True)
# build `DataCollator` from config and tokenizer.
collator_config = config.data_collator
if isinstance(collator_config, str):
collator_config = dict(type=collator_config)
data_collator = build_data_collator(preprocessor.tokenizer, collator_config)
trainer = build_trainer(
config.safe_get('train.trainer', Trainers.default_trainer),
cfg_file=new_config_path,
work_dir=work_dir,
dataset_manager=dm,
data_collator=data_collator,
preprocessor=preprocessor,
**kwargs,
)
return trainer