forked from openai/openai-agents-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtool.py
286 lines (225 loc) · 10.4 KB
/
tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from __future__ import annotations
import inspect
import json
from collections.abc import Awaitable
from dataclasses import dataclass
from typing import Any, Callable, Literal, Union, overload
from openai.types.responses.file_search_tool_param import Filters, RankingOptions
from openai.types.responses.web_search_tool_param import UserLocation
from pydantic import ValidationError
from typing_extensions import Concatenate, ParamSpec
from . import _debug, _utils
from ._utils import MaybeAwaitable
from .computer import AsyncComputer, Computer
from .exceptions import ModelBehaviorError
from .function_schema import DocstringStyle, function_schema
from .logger import logger
from .run_context import RunContextWrapper
from .tracing import SpanError
ToolParams = ParamSpec("ToolParams")
ToolFunctionWithoutContext = Callable[ToolParams, Any]
ToolFunctionWithContext = Callable[Concatenate[RunContextWrapper[Any], ToolParams], Any]
ToolFunction = Union[ToolFunctionWithoutContext[ToolParams], ToolFunctionWithContext[ToolParams]]
@dataclass
class FunctionTool:
"""A tool that wraps a function. In most cases, you should use the `function_tool` helpers to
create a FunctionTool, as they let you easily wrap a Python function.
"""
name: str
"""The name of the tool, as shown to the LLM. Generally the name of the function."""
description: str
"""A description of the tool, as shown to the LLM."""
params_json_schema: dict[str, Any]
"""The JSON schema for the tool's parameters."""
on_invoke_tool: Callable[[RunContextWrapper[Any], str], Awaitable[str]]
"""A function that invokes the tool with the given context and parameters. The params passed
are:
1. The tool run context.
2. The arguments from the LLM, as a JSON string.
You must return a string representation of the tool output. In case of errors, you can either
raise an Exception (which will cause the run to fail) or return a string error message (which
will be sent back to the LLM).
"""
strict_json_schema: bool = True
"""Whether the JSON schema is in strict mode. We **strongly** recommend setting this to True,
as it increases the likelihood of correct JSON input."""
@dataclass
class FileSearchTool:
"""A hosted tool that lets the LLM search through a vector store. Currently only supported with
OpenAI models, using the Responses API.
"""
vector_store_ids: list[str]
"""The IDs of the vector stores to search."""
max_num_results: int | None = None
"""The maximum number of results to return."""
include_search_results: bool = False
"""Whether to include the search results in the output produced by the LLM."""
ranking_options: RankingOptions | None = None
"""Ranking options for search."""
filters: Filters | None = None
"""A filter to apply based on file attributes."""
@property
def name(self):
return "file_search"
@dataclass
class WebSearchTool:
"""A hosted tool that lets the LLM search the web. Currently only supported with OpenAI models,
using the Responses API.
"""
user_location: UserLocation | None = None
"""Optional location for the search. Lets you customize results to be relevant to a location."""
search_context_size: Literal["low", "medium", "high"] = "medium"
"""The amount of context to use for the search."""
@property
def name(self):
return "web_search_preview"
@dataclass
class ComputerTool:
"""A hosted tool that lets the LLM control a computer."""
computer: Computer | AsyncComputer
"""The computer implementation, which describes the environment and dimensions of the computer,
as well as implements the computer actions like click, screenshot, etc.
"""
@property
def name(self):
return "computer_use_preview"
Tool = Union[FunctionTool, FileSearchTool, WebSearchTool, ComputerTool]
"""A tool that can be used in an agent."""
def default_tool_error_function(ctx: RunContextWrapper[Any], error: Exception) -> str:
"""The default tool error function, which just returns a generic error message."""
return f"An error occurred while running the tool. Please try again. Error: {str(error)}"
ToolErrorFunction = Callable[[RunContextWrapper[Any], Exception], MaybeAwaitable[str]]
@overload
def function_tool(
func: ToolFunction[...],
*,
name_override: str | None = None,
description_override: str | None = None,
docstring_style: DocstringStyle | None = None,
use_docstring_info: bool = True,
failure_error_function: ToolErrorFunction | None = None,
) -> FunctionTool:
"""Overload for usage as @function_tool (no parentheses)."""
...
@overload
def function_tool(
*,
name_override: str | None = None,
description_override: str | None = None,
docstring_style: DocstringStyle | None = None,
use_docstring_info: bool = True,
failure_error_function: ToolErrorFunction | None = None,
) -> Callable[[ToolFunction[...]], FunctionTool]:
"""Overload for usage as @function_tool(...)."""
...
def function_tool(
func: ToolFunction[...] | None = None,
*,
name_override: str | None = None,
description_override: str | None = None,
docstring_style: DocstringStyle | None = None,
use_docstring_info: bool = True,
failure_error_function: ToolErrorFunction | None = default_tool_error_function,
) -> FunctionTool | Callable[[ToolFunction[...]], FunctionTool]:
"""
Decorator to create a FunctionTool from a function. By default, we will:
1. Parse the function signature to create a JSON schema for the tool's parameters.
2. Use the function's docstring to populate the tool's description.
3. Use the function's docstring to populate argument descriptions.
The docstring style is detected automatically, but you can override it.
If the function takes a `RunContextWrapper` as the first argument, it *must* match the
context type of the agent that uses the tool.
Args:
func: The function to wrap.
name_override: If provided, use this name for the tool instead of the function's name.
description_override: If provided, use this description for the tool instead of the
function's docstring.
docstring_style: If provided, use this style for the tool's docstring. If not provided,
we will attempt to auto-detect the style.
use_docstring_info: If True, use the function's docstring to populate the tool's
description and argument descriptions.
failure_error_function: If provided, use this function to generate an error message when
the tool call fails. The error message is sent to the LLM. If you pass None, then no
error message will be sent and instead an Exception will be raised.
"""
def _create_function_tool(the_func: ToolFunction[...]) -> FunctionTool:
schema = function_schema(
func=the_func,
name_override=name_override,
description_override=description_override,
docstring_style=docstring_style,
use_docstring_info=use_docstring_info,
)
async def _on_invoke_tool_impl(ctx: RunContextWrapper[Any], input: str) -> str:
try:
json_data: dict[str, Any] = json.loads(input) if input else {}
except Exception as e:
if _debug.DONT_LOG_TOOL_DATA:
logger.debug(f"Invalid JSON input for tool {schema.name}")
else:
logger.debug(f"Invalid JSON input for tool {schema.name}: {input}")
raise ModelBehaviorError(
f"Invalid JSON input for tool {schema.name}: {input}"
) from e
if _debug.DONT_LOG_TOOL_DATA:
logger.debug(f"Invoking tool {schema.name}")
else:
logger.debug(f"Invoking tool {schema.name} with input {input}")
try:
parsed = (
schema.params_pydantic_model(**json_data)
if json_data
else schema.params_pydantic_model()
)
except ValidationError as e:
raise ModelBehaviorError(f"Invalid JSON input for tool {schema.name}: {e}") from e
args, kwargs_dict = schema.to_call_args(parsed)
if not _debug.DONT_LOG_TOOL_DATA:
logger.debug(f"Tool call args: {args}, kwargs: {kwargs_dict}")
if inspect.iscoroutinefunction(the_func):
if schema.takes_context:
result = await the_func(ctx, *args, **kwargs_dict)
else:
result = await the_func(*args, **kwargs_dict)
else:
if schema.takes_context:
result = the_func(ctx, *args, **kwargs_dict)
else:
result = the_func(*args, **kwargs_dict)
if _debug.DONT_LOG_TOOL_DATA:
logger.debug(f"Tool {schema.name} completed.")
else:
logger.debug(f"Tool {schema.name} returned {result}")
return str(result)
async def _on_invoke_tool(ctx: RunContextWrapper[Any], input: str) -> str:
try:
return await _on_invoke_tool_impl(ctx, input)
except Exception as e:
if failure_error_function is None:
raise
result = failure_error_function(ctx, e)
if inspect.isawaitable(result):
return await result
_utils.attach_error_to_current_span(
SpanError(
message="Error running tool (non-fatal)",
data={
"tool_name": schema.name,
"error": str(e),
},
)
)
return result
return FunctionTool(
name=schema.name,
description=schema.description or "",
params_json_schema=schema.params_json_schema,
on_invoke_tool=_on_invoke_tool,
)
# If func is actually a callable, we were used as @function_tool with no parentheses
if callable(func):
return _create_function_tool(func)
# Otherwise, we were used as @function_tool(...), so return a decorator
def decorator(real_func: ToolFunction[...]) -> FunctionTool:
return _create_function_tool(real_func)
return decorator