-
Notifications
You must be signed in to change notification settings - Fork 9.6k
/
Copy pathinterpreter.cpp
179 lines (158 loc) · 7.17 KB
/
interpreter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#include <torch/script.h>
#include <sstream>
// ElementwiseInterpreter is a class that takes in a list of Instructions
// (represented as triples (op, inputs, outputs)) and executes them in a
// C++-based interpreter loop. For brevity, this interpreter only supports
// two operations: element-wise add and element-wise mul.
struct ElementwiseInterpreter : torch::CustomClassHolder {
using InstructionType =
std::tuple<std::string /*op*/, std::vector<std::string> /*inputs*/,
std::string /*output*/>;
ElementwiseInterpreter() {}
// Load a list of instructions into the interpreter. As specified above,
// instructions specify the operation (currently support "add" and "mul"),
// the names of the input values, and the name of the single output value
// from this instruction
void setInstructions(std::vector<InstructionType> instructions) {
instructions_ = std::move(instructions);
}
// Add a constant. The interpreter maintains a set of constants across
// calls. They are keyed by name, and constants can be referenced in
// Instructions by the name specified
void addConstant(const std::string &name, at::Tensor value) {
constants_.insert_or_assign(name, std::move(value));
}
// Set the string names for the positional inputs to the function this
// interpreter represents. When invoked, the interpreter will assign
// the positional inputs to the names in the corresponding position in
// input_names.
void setInputNames(std::vector<std::string> input_names) {
input_names_ = std::move(input_names);
}
// Specify the output name for the function this interpreter represents. This
// should match the "output" field of one of the instructions in the
// instruction list, typically the last instruction.
void setOutputName(std::string output_name) {
output_name_ = std::move(output_name);
}
// Invoke this interpreter. This takes a list of positional inputs and returns
// a single output. Currently, inputs and outputs must all be Tensors.
at::Tensor __call__(std::vector<at::Tensor> inputs) {
// Environment to hold local variables
std::unordered_map<std::string, at::Tensor> environment;
// Load inputs according to the specified names
if (inputs.size() != input_names_.size()) {
std::stringstream err;
err << "Expected " << input_names_.size() << " inputs, but got "
<< inputs.size() << "!";
throw std::runtime_error(err.str());
}
for (size_t i = 0; i < inputs.size(); ++i) {
environment[input_names_[i]] = inputs[i];
}
if (!output_name_) {
throw std::runtime_error("Output name not specified!");
}
for (InstructionType &instr : instructions_) {
// Retrieve all input values for this op
std::vector<at::Tensor> inputs;
for (const auto &input_name : std::get<1>(instr)) {
// Operator output values shadow constants.
// Imagine all constants are defined in statements at the beginning
// of a function (a la K&R C). Any definition of an output value must
// necessarily come after constant definition in textual order. Thus,
// We look up values in the environment first then the constant table
// second to implement this shadowing behavior
if (environment.find(input_name) != environment.end()) {
inputs.push_back(environment.at(input_name));
} else if (constants_.find(input_name) != constants_.end()) {
inputs.push_back(constants_.at(input_name));
} else {
std::stringstream err;
err << "Instruction referenced unknown value " << input_name << "!";
throw std::runtime_error(err.str());
}
}
// Run the specified operation
at::Tensor result;
const auto &op = std::get<0>(instr);
if (op == "add") {
if (inputs.size() != 2) {
throw std::runtime_error("Unexpected number of inputs for add op!");
}
result = inputs[0] + inputs[1];
} else if (op == "mul") {
if (inputs.size() != 2) {
throw std::runtime_error("Unexpected number of inputs for mul op!");
}
result = inputs[0] * inputs[1];
} else {
std::stringstream err;
err << "Unknown operator " << op << "!";
throw std::runtime_error(err.str());
}
// Write back result into environment
const auto &output_name = std::get<2>(instr);
environment[output_name] = std::move(result);
}
if (!environment.count(*output_name_)) {
std::stringstream err;
err << "Execution expected an output value with name ";
err << *output_name_;
err << " but no instruction produced a value with that name!";
throw std::runtime_error(err.str());
}
return environment.at(*output_name_);
}
// Ser/De infrastructure. See
// https://pytorch.org/tutorials/advanced/torch_script_custom_classes.html#defining-serialization-deserialization-methods-for-custom-c-classes
// for more info.
// This is the type we will use to marshall information on disk during
// ser/de. It is a simple tuple composed of primitive types and simple
// collection types like vector, optional, and dict.
using SerializationType =
std::tuple<std::vector<std::string> /*input_names_*/,
c10::optional<std::string> /*output_name_*/,
c10::Dict<std::string, at::Tensor> /*constants_*/,
std::vector<InstructionType> /*instructions_*/
>;
// This function yields the SerializationType instance for `this`.
SerializationType __getstate__() const {
return SerializationType{input_names_, output_name_, constants_,
instructions_};
}
// This function will create an instance of `ElementwiseInterpreter` given
// an instance of `SerializationType`.
static c10::intrusive_ptr<ElementwiseInterpreter>
__setstate__(SerializationType state) {
auto instance = c10::make_intrusive<ElementwiseInterpreter>();
std::tie(instance->input_names_, instance->output_name_,
instance->constants_, instance->instructions_) = std::move(state);
return instance;
}
// Class members
std::vector<std::string> input_names_;
c10::optional<std::string> output_name_;
c10::Dict<std::string, at::Tensor> constants_;
std::vector<InstructionType> instructions_;
};
// Register ElementwiseInterpreter as callable from Python
// and TorchScript.
TORCH_LIBRARY(NativeInterpretation, m) {
m.class_<ElementwiseInterpreter>("ElementwiseInterpreter")
.def(torch::init<>())
.def("set_instructions", &ElementwiseInterpreter::setInstructions)
.def("add_constant", &ElementwiseInterpreter::addConstant)
.def("set_input_names", &ElementwiseInterpreter::setInputNames)
.def("set_output_name", &ElementwiseInterpreter::setOutputName)
.def("__call__", &ElementwiseInterpreter::__call__)
.def_pickle(
/* __getstate__ */
[](const c10::intrusive_ptr<ElementwiseInterpreter> &self) {
return self->__getstate__();
},
/* __setstate__ */
[](ElementwiseInterpreter::SerializationType state) {
return ElementwiseInterpreter::__setstate__(std::move(state));
});
}