Skip to content

Latest commit

 

History

History
32 lines (29 loc) · 6.38 KB

refsheet.md

File metadata and controls

32 lines (29 loc) · 6.38 KB

MatplotLib Reference Sheet


Concept Syntax/Example Explanation
Importing Matplotlib import matplotlib.pyplot as plt Import the pyplot module, the main interface for plotting with Matplotlib.
Basic Line Plot plt.plot([1, 2, 3], [4, 5, 6])
plt.title('Line Plot')
plt.show()
Creates a basic line plot with x and y values. Use plt.show() to display the plot.
Adding Titles and Labels plt.title('My Title')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
Add a title and labels to the x and y axes.
Styling Line Plots plt.plot(x, y, color='red', linestyle='--', marker='o', label='Data')
plt.legend()
Customize line color, style, marker, and add a legend.
Bar Plot plt.bar(['A', 'B', 'C'], [10, 15, 7], color='blue') Creates a vertical bar plot.
Horizontal Bar Plot plt.barh(['A', 'B', 'C'], [10, 15, 7], color='green') Creates a horizontal bar plot.
Scatter Plot plt.scatter(x, y, color='orange', alpha=0.5, label='Points')
plt.legend()
Creates a scatter plot. Use alpha to control point transparency.
Histogram plt.hist(data, bins=20, color='purple', edgecolor='black') Plots a histogram to show data distribution. Use bins to control intervals.
Pie Chart plt.pie([15, 30, 45], labels=['A', 'B', 'C'], autopct='%1.1f%%', startangle=140) Creates a pie chart. Use autopct to show percentages.
Box Plot plt.boxplot([data1, data2], labels=['Set 1', 'Set 2']) Displays a box plot to visualize the spread and outliers of data.
Multiple Subplots plt.subplot(2, 1, 1)
plt.plot(x, y)
plt.subplot(2, 1, 2)
plt.bar(x, y)
plt.tight_layout()
Create multiple plots within a single figure using subplot(rows, cols, index).
Figure Size plt.figure(figsize=(8, 6)) Adjust the figure size using figsize.
Saving Figures plt.savefig('plot.png', dpi=300) Save the current figure to a file. Use dpi to specify resolution.
Logarithmic Scale plt.xscale('log')
plt.yscale('log')
Set logarithmic scaling for the x or y axis.
Annotations plt.annotate('Peak', xy=(2, 6), xytext=(3, 8), arrowprops=dict(facecolor='black', arrowstyle='->')) Add annotations to highlight points of interest on the plot.
Grid plt.grid(True, linestyle='--', color='gray') Add a grid to the plot for better readability.
Legend plt.plot(x, y, label='Data')
plt.legend(loc='best')
Add a legend to label different data series. Use loc to specify position.
Ticks plt.xticks([0, 1, 2], ['Zero', 'One', 'Two'])
plt.yticks(rotation=45)
Customize x and y axis ticks and their labels.
3D Plotting from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(x, y, z)
Create 3D plots using the Axes3D module for advanced visualizations.
Adding Text plt.text(1, 2, 'Point (1,2)', fontsize=12, color='red') Add custom text to the plot at a specific location.
Horizontal and Vertical Lines plt.axhline(y=0.5, color='blue', linestyle='--')
plt.axvline(x=1.5, color='green', linestyle='--')
Add horizontal and vertical reference lines to a plot.
Fill Between plt.fill_between(x, y1, y2, color='yellow', alpha=0.3) Fill the area between two curves or a curve and the axis.
Color Maps plt.imshow(data, cmap='viridis', interpolation='none') Display data as an image. Use cmap to choose a color map.
Tight Layout plt.tight_layout() Automatically adjust subplot parameters to give specified padding.