forked from h2oai/h2o-3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathh2o_test_utils.py
681 lines (552 loc) · 30.3 KB
/
h2o_test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
import sys, os, time, json, datetime, errno, stat, getpass, requests, pprint
if sys.version_info[0] < 3: import urlparse
else: import urllib.parse as urlparse
import h2o
debug_rest = False
verbosity = 0 # 0, 1, 2, 3
pp = pprint.PrettyPrinter(indent=4) # pretty printer for debugging
def setVerbosity(level):
global verbosity
if level: verbosity = level
def isVerbose():
global verbosity
return verbosity > 0
def isVerboser():
global verbosity
return verbosity > 1
def isVerbosest():
global verbosity
return verbosity > 2
def sleep(secs):
if getpass.getuser() == 'jenkins':
period = max(secs, 120)
else:
period = secs
# if jenkins, don't let it sleep more than 2 minutes
# due to left over h2o.sleep(3600)
time.sleep(period)
def dump_json(j):
return json.dumps(j, sort_keys=True, indent=2)
def check_params_update_kwargs(params_dict, kw, function, print_params):
# only update params_dict..don't add
# throw away anything else as it should come from the model (propagating what RF used)
for k in kw:
if k in params_dict:
params_dict[k] = kw[k]
else:
raise Exception("illegal parameter '%s' in %s" % (k, function))
if print_params:
print("%s parameters:" % function + repr(params_dict))
sys.stdout.flush()
######################
# Assertion-type stuff
def make_sure_path_exists(path):
try:
os.makedirs(path)
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
def followPath(d, path_elems):
for path_elem in path_elems:
if "" != path_elem:
idx = -1
if path_elem.endswith("]"):
idx = int(path_elem[path_elem.find("[") + 1:path_elem.find("]")])
path_elem = path_elem[:path_elem.find("[")]
assert path_elem in d, "FAIL: Failed to find key: " + path_elem + " in dict: " + repr(d)
if -1 == idx:
d = d[path_elem]
else:
d = d[path_elem][idx]
return d
def assertKeysExist(d, path, keys):
path_elems = path.split("/")
d = followPath(d, path_elems)
for key in keys:
assert key in d, "FAIL: Failed to find key: " + key + " in dict: " + repr(d)
def assertKeysExistAndNonNull(d, path, keys):
path_elems = path.split("/")
d = followPath(d, path_elems)
for key in keys:
assert key in d, "FAIL: Failed to find key: " + key + " in dict: " + repr(d)
assert d[key] != None, "FAIL: Value unexpectedly null: " + key + " in dict: " + repr(d)
def assertKeysDontExist(d, path, keys):
path_elems = path.split("/")
d = followPath(d, path_elems)
for key in keys:
assert key not in d, "FAIL: Unexpectedly found key: " + key + " in dict: " + repr(d)
###############
# LOGGING STUFF
# used to rename the sandbox when running multiple tests in same dir (in different shells)
def get_sandbox_name():
if "H2O_SANDBOX_NAME" in os.environ:
a = os.environ["H2O_SANDBOX_NAME"]
print("H2O_SANDBOX_NAME", a)
return a
else:
return "sandbox"
LOG_DIR = get_sandbox_name()
make_sure_path_exists(LOG_DIR)
def log(cmd, comment=None):
filename = LOG_DIR + '/commands.log'
# everyone can read
with open(filename, 'a') as f:
f.write(str(datetime.datetime.now()) + ' -- ')
# what got sent to h2o
# f.write(cmd)
# let's try saving the unencoded url instead..human readable
if cmd:
f.write(urlparse.unquote(cmd))
if comment:
f.write(' #')
f.write(comment)
f.write("\n")
elif comment: # for comment-only
f.write(comment + "\n")
# jenkins runs as 0xcustomer, and the file wants to be archived by jenkins who isn't in his group
permissions = stat.S_IRUSR | stat.S_IWUSR | stat.S_IRGRP | stat.S_IROTH
os.chmod(filename, permissions)
def log_rest(s):
if not debug_rest:
return
rest_log_file = open(os.path.join(LOG_DIR, "rest.log"), "a")
rest_log_file.write(s)
rest_log_file.write("\n")
rest_log_file.close()
######################
# REST API stuff
def list_to_dict(l, key):
'''
Given a List and a key to look for in each element return a Dict which maps the value of that key to the element.
Also handles nesting for the key, so you can use this for things like a list of elements which contain H2O Keys and
return a Dict indexed by the 'name" element within the key.
list_to_dict([{'key': {'name': 'joe', 'baz': 17}}, {'key': {'name': 'bobby', 'baz': 42}}], 'key/name') =>
{'joe': {'key': {'name': 'joe', 'baz': 17}}, 'bobby': {'key': {'name': 'bobby', 'baz': 42}}}
'''
result = {}
for entry in l:
# print 'In list_to_dict, entry: ', repr(entry)
part = entry
k = None
for keypart in key.split('/'):
part = part[keypart]
k = keypart
# print 'for keypart: ', keypart, ' part: ', repr(part)
result[part] = entry
# print 'result: ', repr(result)
return result
def validate_builder(algo, builder):
''' Validate that a model builder seems to have a well-formed parameters list. '''
assert 'parameters' in builder, "FAIL: Failed to find parameters list in builder: " + algo + " (" + repr(builder) + ")"
assert isinstance(builder['parameters'], list), "FAIL: 'parameters' element is not a list in builder: " + algo + " (" + repr(builder) + ")"
parameters = builder['parameters']
assert len(parameters) > 0, "FAIL: parameters list is empty: " + algo + " (" + repr(builder) + ")"
for parameter in parameters:
assertKeysExist(parameter, '', ['name', 'help', 'required', 'type', 'default_value', 'actual_value', 'level', 'values'])
assert 'can_build' in builder, "FAIL: Failed to find can_build list in builder: " + algo + " (" + repr(builder) + ")"
assert isinstance(builder['can_build'], list), "FAIL: 'can_build' element is not a list in builder: " + algo + " (" + repr(builder) + ")"
assert len(builder['can_build']) > 0, "FAIL: 'can_build' list is empty in builder: " + algo + " (" + repr(builder) + ")"
def validate_model_builder_result(result, original_params, model_name):
'''
Validate that a model build result has no parameter validation errors,
and that it has a Job with a Key. Note that model build will return a
Job if successful, and a ModelBuilder with errors if it's not.
'''
global pp
error = False
if result is None:
print('FAIL: result for model %s is None, timeout during build? result: %s' % (model_name, result))
error = True
elif result['__http_response']['status_code'] != requests.codes.ok:
error = True
print("FAIL: expected 200 OK from a good validation request, got: " + str(result['__http_response']['status_code']))
print("dev_msg: " + result['dev_msg'])
elif 'error_count' in result and result['error_count'] > 0:
# error case
print('FAIL: Parameters validation error for model: ', model_name)
error = True
if error:
print('Input parameters: ')
pp.pprint(original_params)
print('Returned result: ')
pp.pprint(result)
assert result['error_count'] == 0, "FAIL: Non-zero error_count for model: " + model_name
assert 'job' in result, "FAIL: Failed to find job key for model: " + model_name + ": " + pp.pprint(result)
job = result['job']
assert type(job) is dict, "FAIL: Job element for model is not a dict: " + model_name + ": " + pp.pprint(result)
assert 'key' in job, "FAIL: Failed to find key in job for model: " + model_name + ": " + pp.pprint(result)
def validate_grid_builder_result(result, original_params, grid_params, grid_id):
'''
Validate that a grid build result has no parameter validation errors,
and that it has a Job with a Key.
'''
global pp
error = False
if result is None:
print('FAIL: result for grid %s is None, timeout during build? result: %s' % (grid_id, result))
error = True
elif result['__http_response']['status_code'] != requests.codes.ok:
error = True
print("FAIL: expected 200 OK from a good grid validation request, got: " + str(result['__http_response']['status_code']))
print("dev_msg: " + result['dev_msg'])
if error:
print('Input parameters: ')
pp.pprint(original_params)
print('Grid parameters: ')
pp.pprint(grid_params)
print('Returned result: ')
pp.pprint(result)
assert result['job']['error_count'] == 0, "FAIL: Non-zero error_count for model: " + grid_id
def validate_validation_messages(result, expected_error_fields):
'''
Check that we got the expected ERROR validation messages for a model build or validation check with bad parameters.
'''
assert 'error_count' in result, "FAIL: Failed to find error_count in bad-parameters model build result."
assert 0 < result['error_count'], "FAIL: 0 != error_count in bad-parameters model build validation result."
error_fields = []
for validation_message in result['messages']:
if validation_message['message_type'] == 'ERRR':
error_fields.append(validation_message['field_name'])
not_found = [item for item in expected_error_fields if item not in error_fields]
assert len(not_found) == 0, 'FAIL: Failed to find all expected ERROR validation messages. Missing: ' + repr(not_found) + ' from result: ' + repr(error_fields)
assert len(not_found) == 0, 'FAIL: Failed to find all expected ERROR validation messages. Missing: ' + repr(not_found) + ' from result: ' + repr(result['messages'])
def validate_model_exists(a_node, model_name):
'''
Validate that a given model key is found in the models list.
'''
models = a_node.models()['models']
models_dict = list_to_dict(models, 'model_id/name')
assert model_name in models_dict, "FAIL: Failed to find " + model_name + " in models list: " + repr(models_dict.keys())
return a_node.models(key=model_name)['models'][0]
def validate_frame_exists(a_node, frame_name, frames=None):
'''
Validate that a given frame key is found in the frames list.
'''
if frames is None:
result = a_node.frames()
frames = result['frames']
frames_dict = list_to_dict(frames, 'frame_id/name')
assert frame_name in frames_dict, "FAIL: Failed to find " + frame_name + " in frames list: " + repr(frames_dict.keys())
return frames_dict[frame_name]
def validate_job_exists(a_node, job_name, jobs=None):
'''
Validate that a given job key is found in the jobs list.
'''
if jobs is None:
result = a_node.jobs()
jobs = result['jobs']
jobs_dict = list_to_dict(jobs, 'key/name')
assert job_name in jobs_dict, "FAIL: Failed to find " + job_name + " in jobs list: " + repr(jobs_dict.keys())
return jobs_dict[job_name]
def validate_actual_parameters(input_parameters, actual_parameters, training_frame, validation_frame):
'''
Validate that the returned parameters list for a model build contains all the values we passed in as input.
'''
actuals_dict = list_to_dict(actual_parameters, 'name')
for k, expected in input_parameters.iteritems():
# TODO: skipping some stuff for now because they aren't serialized properly
if k is 'response_column':
continue
# TODO: skipping training frame becuase model building is now changing the training frame. Why?!
if k is 'training_frame':
continue
# Python says True; json says true
assert k in actuals_dict, "FAIL: Expected key " + k + " not found in actual parameters list."
actual = actuals_dict[k]['actual_value']
actual_type = actuals_dict[k]['type']
if actual_type == 'boolean':
expected = bool(expected)
actual = True if 'true' == actual else False # true -> True
elif actual_type == 'int':
expected = int(expected)
actual = int(actual)
elif actual_type == 'long':
expected = long(expected)
actual = long(actual)
elif actual_type == 'string':
# convert from Unicode
expected = str(expected)
actual = str(actual)
elif actual_type == 'string[]':
# convert from Unicode
# expected = [str(expected_val) for expected_val in expected]
actual = [str(actual_val) for actual_val in actual]
elif actual_type == 'double':
expected = float(expected)
actual = float(actual)
elif actual_type == 'float':
expected = float(expected)
actual = float(actual)
elif actual_type.startswith('Key<'):
# For keys we send just a String but receive an object
expected = expected
actual = actual['name']
# TODO: don't do exact comparison of floating point!
assert expected == actual, "FAIL: Parameter with name: " + k + " expected to have input value: " + str(expected) + ", instead has: " + str(actual) + " cast from: " + str(actuals_dict[k]['actual_value']) + " ( type of expected: " + str(type(expected)) + ", type of actual: " + str(type(actual)) + ")"
# TODO: training_frame, validation_frame
def validate_grid_parameters(grid_parameters, actual_parameters):
'''
Validate that the returned parameters list for a model build contains values we passed in as grid parameters.
'''
actuals_dict = list_to_dict(actual_parameters, 'name')
for k, grid_param_values in grid_parameters.iteritems():
# Python says True; json says true
assert k in actuals_dict, "FAIL: Expected key " + k + " not found in grid parameters list."
actual = actuals_dict[k]['actual_value']
actual_type = actuals_dict[k]['type']
if actual_type == 'boolean':
grid_param_values = [bool(x) for x in grid_param_values]
actual = True if 'true' == actual else False # true -> True
elif actual_type == 'int':
grid_param_values = [int(x) for x in grid_param_values]
actual = int(actual)
elif actual_type == 'long':
grid_param_values = [long(x) for x in grid_param_values]
actual = long(actual)
elif actual_type == 'string':
# convert from Unicode
grid_param_values = [str(x) for x in grid_param_values]
actual = str(actual)
elif actual_type == 'string[]':
# convert from Unicode
# grid_param_values = [str(grid_param_values_val) for grid_param_values_val in grid_param_values]
actual = [str(actual_val) for actual_val in actual]
elif actual_type == 'double':
grid_param_values = [float(x) for x in grid_param_values]
actual = float(actual)
elif actual_type == 'float':
grid_param_values = [float(x) for x in grid_param_values]
actual = float(actual)
elif actual_type.startswith('Key<'):
# For keys we send just a String but receive an object
grid_param_values = grid_param_values
actual = actual['name']
# TODO: don't do exact comparison of floating point!
# print("actual_type: " + actual_type)
# print("actual: " + repr(actual) + " (" + str(type(actual)) + ")")
# print("grid_param_values: " + repr(grid_param_values))
# TODO: 1-d arrays only for the moment; no grid over DL layers
if actual_type.endswith(']'):
actual = actual[0]
# NOTE: check for IN
assert actual in grid_param_values, "FAIL: Parameter with name: " + k + " expected to be a possible grid value: " + str(grid_param_values) + ", instead has: " + str(actual) + " cast from: " + str(actuals_dict[k]['actual_value']) + " ( type of expected: " + str(type(grid_param_values[0])) + ", type of actual: " + str(type(actual)) + ")"
# TODO: training_frame, validation_frame
def fetch_and_validate_grid_sort(a_node, key, sort_by, decreasing):
# key='kmeans_prostate_grid', sort_by='totss', decreasing=TRUE)
grid = a_node.grid(key=key, sort_by=sort_by, decreasing=decreasing)
training_metrics = grid['training_metrics']
# check sorting:
criteria = []
# Unfortunately, we use mixed case in the JSON and lower case in the back end. . .
for mm in training_metrics:
for k, v in mm.iteritems():
if k.lower() == sort_by:
criteria.append(v)
break
unsorted = list(criteria)
criteria.sort(reverse=decreasing)
# print("criteria sorted: " + repr(criteria))
# print("original: " + repr(unsorted))
assert unsorted == criteria, "FAIL: model metrics were not sorted correctly by criterion: " + key + ", " + sort_by + ", decreasing: " + decreasing
for i in range(len(grid['model_ids'])):
assert grid['model_ids'][i]['name'] == training_metrics[i]['model']['name'], "FAIL: model_ids not sorted in the same order as training_metrics for grid: " + key + ", index: " + str(i)
def validate_predictions(a_node, result, model_name, frame_key, expected_rows, predictions_frame=None):
'''
Validate a /Predictions result.
'''
assert result is not None, "FAIL: Got a null result for scoring: " + model_name + " on: " + frame_key
assert 'model_metrics' in result, "FAIL: Predictions for scoring: " + model_name + " on: " + frame_key + " does not contain a model_metrics object."
mm = result['model_metrics'][0]
h2o.H2O.verboseprint('mm: ', repr(mm))
#assert 'auc' in mm, "FAIL: Predictions for scoring: " + model_name + " on: " + frame_key + " does not contain an AUC."
#assert 'cm' in mm, "FAIL: Predictions for scoring: " + model_name + " on: " + frame_key + " does not contain a CM."
assert 'predictions' in mm, "FAIL: Predictions for scoring: " + model_name + " on: " + frame_key + " does not contain an predictions section."
assert 'frame_id' in mm['predictions'], "FAIL: Predictions for scoring: " + model_name + " on: " + frame_key + " does not contain a key."
assert 'name' in mm['predictions']['frame_id'], "FAIL: Predictions for scoring: " + model_name + " on: " + frame_key + " does not contain a key name."
predictions_key = mm['predictions']['frame_id']['name']
f = a_node.frames(key=predictions_key, find_compatible_models=True, row_count=5)
frames = f['frames']
frames_dict = list_to_dict(frames, 'frame_id/name')
assert predictions_key in frames_dict, "FAIL: Failed to find predictions key" + predictions_key + " in Frames list."
predictions = mm['predictions']
h2o.H2O.verboseprint('prediction result: ', repr(result))
assert 'columns' in predictions, "FAIL: Predictions for scoring: " + model_name + " on: " + frame_key + " does not contain an columns section."
assert len(predictions['columns']) > 0, "FAIL: Predictions for scoring: " + model_name + " on: " + frame_key + " does not contain any columns."
assert 'label' in predictions['columns'][0], "FAIL: Predictions for scoring: " + model_name + " on: " + frame_key + " column 0 has no label element."
assert 'predict' == predictions['columns'][0]['label'], "FAIL: Predictions for scoring: " + model_name + " on: " + frame_key + " column 0 is not 'predict'."
assert expected_rows == predictions['rows'], "FAIL: Predictions for scoring: " + model_name + " on: " + frame_key + " has an unexpected number of rows."
assert 'predictions_frame' in result, "FAIL: failed to find 'predictions_frame' in predict result:" + h2o_test_utils.dump_json(result)
assert 'name' in result['predictions_frame'], "FAIL: failed to find name in 'predictions_frame' in predict result:" + h2o_test_utils.dump_json(result)
if predictions_frame is not None:
assert predictions_frame == result['predictions_frame']['name'], "FAIL: bad value for 'predictions_frame' in predict result; expected: " + predictions_frame + ", got: " + result['predictions_frame']['name']
def cleanup(a_node, models=None, frames=None):
'''
DELETE the specified models and frames from H2O.
'''
###################
# test delete_model
if models is None:
a_node.delete_models()
else:
for model in models:
a_node.delete_model(model)
ms = a_node.models()
if models is None:
assert 'models' in ms and 0 == len(ms['models']), "FAIL: Called delete_models and the models list isn't empty: " + h2o_test_utils.dump_json(ms)
else:
for model in models:
for m in ms['models']:
assert m['model_id'] != model, 'FAIL: Found model that we tried to delete in the models list: ' + model
###################
# test delete_frame
if frames is not None:
for frame in frames:
a_node.delete_frame(frame)
ms = a_node.frames(row_count=5)
found = False
for m in ms['frames']:
assert m['frame_id'] != frame, 'FAIL: Found frame that we tried to delete in the frames list: ' + frame
# TODO
####################
# test delete_models
# jobs = a_node.build_model(algo='kmeans', model_id='dummy', training_frame='prostate_binomial', parameters={'k': 2 }, timeoutSecs=240) # synchronous
# a_node.delete_models()
# models = a_node.models()
# assert 'models' in models and 0 == len(models['models']), "FAIL: Called delete_models and the models list isn't empty: " + h2o_test_utils.dump_json(models)
# TODO
####################
# test delete_frames
class ModelSpec(dict):
'''
Dictionary which specifies all that's needed to build and validate a model.
'''
def __init__(self, dest_key, algo, frame_key, params, model_category):
self['algo'] = algo
self['frame_key'] = frame_key
self['params'] = params
self['model_category'] = model_category
if dest_key is None:
self['dest_key'] = algo + "_" + frame_key
else:
self['dest_key'] = dest_key
@staticmethod
def for_dataset(dest_key, algo, dataset, params):
'''
Factory for creating a ModelSpec for a given Dataset (frame and additional metadata).
'''
dataset_params = {}
assert 'model_category' in dataset, "FAIL: Failed to find model_category in dataset: " + repr(dataset)
if 'response_column' in dataset: dataset_params['response_column'] = dataset['response_column']
if 'ignored_columns' in dataset: dataset_params['ignored_columns'] = dataset['ignored_columns']
return ModelSpec(dest_key, algo, dataset['dest_key'], dict(dataset_params.items() + params.items()), dataset['model_category'])
def build_and_validate_model(self, a_node):
before = time.time()
if isVerbose(): print('About to build: ' + self['dest_key'] + ', a ' + self['algo'] + ' model on frame: ' + self['frame_key'] + ' with params: ' + repr(self['params']))
result = a_node.build_model(algo=self['algo'], model_id=self['dest_key'], training_frame=self['frame_key'], parameters=self['params'], timeoutSecs=240) # synchronous
validate_model_builder_result(result, self['params'], self['dest_key'])
model = validate_model_exists(a_node, self['dest_key'])
validate_actual_parameters(self['params'], model['parameters'], self['frame_key'], None)
# TODO: refactor into helper
assert 'output' in model, 'FAIL: Failed to find output object in model: ' + self['dest_key']
assert 'model_category' in model['output'], 'FAIL: Failed to find model_category in model: ' + self['dest_key']
assert model['output']['model_category'] == self['model_category'], 'FAIL: Expected model_category: ' + self['model_category'] + ' but got: ' + model['output']['model_category'] + ' for model: ' + self['dest_key']
if isVerbose(): print('Done building: ' + self['dest_key'] + " (" + str(time.time() - before) + ")")
return model
class GridSpec(dict):
'''
Dictionary which specifies all that's needed to build and validate a grid of models.
'''
def __init__(self, dest_key, algo, frame_key, params, grid_params, model_category, search_criteria=None):
self['algo'] = algo
self['frame_key'] = frame_key
self['params'] = params
self['grid_params'] = grid_params
self['model_category'] = model_category
self['search_criteria'] = search_criteria
if dest_key is None:
self['dest_key'] = algo + "_" + frame_key
else:
self['dest_key'] = dest_key
@staticmethod
def for_dataset(dest_key, algo, dataset, params, grid_params, search_criteria=None):
'''
Factory for creating a GridSpec for a given Dataset (frame and additional metadata).
'''
dataset_params = {}
assert 'model_category' in dataset, "FAIL: Failed to find model_category in dataset: " + repr(dataset)
if 'response_column' in dataset: dataset_params['response_column'] = dataset['response_column']
if 'ignored_columns' in dataset: dataset_params['ignored_columns'] = dataset['ignored_columns']
return GridSpec(dest_key, algo, dataset['dest_key'], dict(dataset_params.items() + params.items()), grid_params, dataset['model_category'], search_criteria)
def build_and_validate_grid(self, a_node):
before = time.time()
if isVerbose(): print('About to build: ' + self['dest_key'] + ', a ' + self['algo'] + ' model grid on frame: ' + self['frame_key'] + ' with params: ' + repr(self['params']) + ' and grid_params: ' + repr(self['grid_params']))
# returns a GridSearchSchema:
result = a_node.build_model_grid(algo=self['algo'], grid_id=self['dest_key'], training_frame=self['frame_key'], parameters=self['params'], grid_parameters=self['grid_params'], search_criteria=self['search_criteria'], timeoutSecs=240) # synchronous
if isVerboser(): print('result: ' + repr(result))
grid = a_node.grid(key=self['dest_key'])
if isVerboser(): print('grid: ' + repr(grid))
validate_grid_builder_result(grid, self['params'], self['grid_params'], self['dest_key'])
# print("grid result: " + repr(grid))
# print("grid __meta: " + repr(grid['__meta']))
for model_key_dict in grid['model_ids']:
model_key = model_key_dict['name']
model = validate_model_exists(a_node, model_key)
validate_actual_parameters(self['params'], model['parameters'], self['frame_key'], None)
validate_grid_parameters(self['grid_params'], model['parameters'])
assert 'output' in model, 'FAIL: Failed to find output object in model: ' + self['dest_key']
assert 'model_category' in model['output'], 'FAIL: Failed to find model_category in model: ' + self['dest_key']
assert model['output']['model_category'] == self['model_category'], 'FAIL: Expected model_category: ' + self['model_category'] + ' but got: ' + model['output']['model_category'] + ' for model: ' + self['dest_key']
# Cartesian or random with max_models: check that we got the right number of models if we know beforehand:
combos = 1
for k, vals in self['grid_params'].iteritems():
combos *= len(vals)
# NOTE: if we have a stopping critereon which is not a fixed number we don't know how many models to expect
expected = None
if self['search_criteria'] is None or self['search_criteria']['strategy'] is 'Cartesian':
expected = combos
elif self['search_criteria'] is not None and 'max_models' in self['search_criteria'] and 'max_time_ms' not in self['search_criteria']:
expected = min(combos, self['search_criteria']['max_models'])
if expected is not None:
assert expected == len(grid['model_ids']), 'FAIL: Expected ' + str(expected) + ' models; got: ' + str(len(grid['model_ids']))
if isVerbose(): print('Done building: ' + self['dest_key'] + " (" + str(time.time() - before) + ")")
return grid
### TODO: we should be able to have multiple DatasetSpecs that come from a single parse, for efficiency
class DatasetSpec(dict):
'''
Dictionary which specifies the properties of a Frame (Dataset) for a specific use
(e.g., prostate data with binomial classification on the CAPSULE column
OR prostate data with regression on the AGE column).
'''
def __init__(self, dest_key, path, expected_rows, model_category, response_column, ignored_columns):
self['path'] = os.path.realpath(path)
self['expected_rows'] = expected_rows
self['model_category'] = model_category
self['response_column'] = response_column
self['ignored_columns'] = ignored_columns
if dest_key == None:
# specify dest_key every time
basename = os.path.basename(path)
basename_split = basename.split(".")
if len(basename_split) == 1:
self['dest_key'] = basename_split[0] + ".hex" # name + ".hex"
else:
self['dest_key'] = basename_split[-2] + ".hex" # name without suffix + ".hex"
else:
self['dest_key'] = dest_key
def import_and_validate_dataset(self, a_node):
if isVerbose(): print("About to import and validate: " + self['path'])
import_result = a_node.import_files(path=self['path'])
if isVerboser():
print("import_result: ")
pp.pprint(import_result)
print("frames: ")
pp.pprint(a_node.frames(key=import_result['destination_frames'][0], row_count=5))
frames = a_node.frames(key=import_result['destination_frames'][0], row_count=5)['frames']
assert frames[0]['is_text'], "FAIL: Raw imported Frame is not is_text: " + repr(frames[0])
parse_result = a_node.parse(key=import_result['destination_frames'][0], dest_key=self['dest_key']) # TODO: handle multiple files
key = parse_result['frames'][0]['frame_id']['name']
assert key == self['dest_key'], 'FAIL: Imported frame key is wrong; expected: ' + self['dest_key'] + ', got: ' + key
assert self['expected_rows'] == parse_result['frames'][0]['rows'], 'FAIL: Imported frame number of rows is wrong; expected: ' + str(self['expected_rows']) + ', got: ' + str(parse_result['frames'][0]['rows'])
self['dataset'] = parse_result['frames'][0] # save the imported dataset object
if isVerbose(): print("Imported and validated key: " + self['dataset']['frame_id']['name'])
return self['dataset']