forked from dpkp/kafka-python
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathconsumer_performance.py
executable file
·181 lines (153 loc) · 6.04 KB
/
consumer_performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python
# Adapted from https://github.com/mrafayaleem/kafka-jython
from __future__ import absolute_import, print_function
import argparse
import logging
import pprint
import sys
import threading
import traceback
from kafka.vendor.six.moves import range
from kafka import KafkaConsumer, KafkaProducer
from test.fixtures import KafkaFixture, ZookeeperFixture
logging.basicConfig(level=logging.ERROR)
def start_brokers(n):
print('Starting {0} {1}-node cluster...'.format(KafkaFixture.kafka_version, n))
print('-> 1 Zookeeper')
zk = ZookeeperFixture.instance()
print('---> {0}:{1}'.format(zk.host, zk.port))
print()
partitions = min(n, 3)
replicas = min(n, 3)
print('-> {0} Brokers [{1} partitions / {2} replicas]'.format(n, partitions, replicas))
brokers = [
KafkaFixture.instance(i, zk.host, zk.port, zk_chroot='',
partitions=partitions, replicas=replicas)
for i in range(n)
]
for broker in brokers:
print('---> {0}:{1}'.format(broker.host, broker.port))
print()
return brokers
class ConsumerPerformance(object):
@staticmethod
def run(args):
try:
props = {}
for prop in args.consumer_config:
k, v = prop.split('=')
try:
v = int(v)
except ValueError:
pass
if v == 'None':
v = None
props[k] = v
if args.brokers:
brokers = start_brokers(args.brokers)
props['bootstrap_servers'] = ['{0}:{1}'.format(broker.host, broker.port)
for broker in brokers]
print('---> bootstrap_servers={0}'.format(props['bootstrap_servers']))
print()
print('-> Producing records')
record = bytes(bytearray(args.record_size))
producer = KafkaProducer(compression_type=args.fixture_compression,
**props)
for i in range(args.num_records):
producer.send(topic=args.topic, value=record)
producer.flush()
producer.close()
print('-> OK!')
print()
print('Initializing Consumer...')
props['auto_offset_reset'] = 'earliest'
if 'consumer_timeout_ms' not in props:
props['consumer_timeout_ms'] = 10000
props['metrics_sample_window_ms'] = args.stats_interval * 1000
for k, v in props.items():
print('---> {0}={1}'.format(k, v))
consumer = KafkaConsumer(args.topic, **props)
print('---> group_id={0}'.format(consumer.config['group_id']))
print('---> report stats every {0} secs'.format(args.stats_interval))
print('---> raw metrics? {0}'.format(args.raw_metrics))
timer_stop = threading.Event()
timer = StatsReporter(args.stats_interval, consumer,
event=timer_stop,
raw_metrics=args.raw_metrics)
timer.start()
print('-> OK!')
print()
records = 0
for msg in consumer:
records += 1
if records >= args.num_records:
break
print('Consumed {0} records'.format(records))
timer_stop.set()
except Exception:
exc_info = sys.exc_info()
traceback.print_exception(*exc_info)
sys.exit(1)
class StatsReporter(threading.Thread):
def __init__(self, interval, consumer, event=None, raw_metrics=False):
super(StatsReporter, self).__init__()
self.interval = interval
self.consumer = consumer
self.event = event
self.raw_metrics = raw_metrics
def print_stats(self):
metrics = self.consumer.metrics()
if self.raw_metrics:
pprint.pprint(metrics)
else:
print('{records-consumed-rate} records/sec ({bytes-consumed-rate} B/sec),'
' {fetch-latency-avg} latency,'
' {fetch-rate} fetch/s,'
' {fetch-size-avg} fetch size,'
' {records-lag-max} max record lag,'
' {records-per-request-avg} records/req'
.format(**metrics['consumer-fetch-manager-metrics']))
def print_final(self):
self.print_stats()
def run(self):
while self.event and not self.event.wait(self.interval):
self.print_stats()
else:
self.print_final()
def get_args_parser():
parser = argparse.ArgumentParser(
description='This tool is used to verify the consumer performance.')
parser.add_argument(
'--topic', type=str,
help='Topic for consumer test',
default='kafka-python-benchmark-test')
parser.add_argument(
'--num-records', type=long,
help='number of messages to consume',
default=1000000)
parser.add_argument(
'--record-size', type=int,
help='message size in bytes',
default=100)
parser.add_argument(
'--consumer-config', type=str, nargs='+', default=(),
help='kafka consumer related configuaration properties like '
'bootstrap_servers,client_id etc..')
parser.add_argument(
'--fixture-compression', type=str,
help='specify a compression type for use with broker fixtures / producer')
parser.add_argument(
'--brokers', type=int,
help='Number of kafka brokers to start',
default=0)
parser.add_argument(
'--stats-interval', type=int,
help='Interval in seconds for stats reporting to console',
default=5)
parser.add_argument(
'--raw-metrics', action='store_true',
help='Enable this flag to print full metrics dict on each interval')
return parser
if __name__ == '__main__':
args = get_args_parser().parse_args()
ConsumerPerformance.run(args)