-
Notifications
You must be signed in to change notification settings - Fork 131
/
Copy pathDenoisingAndInterpolation.py
142 lines (107 loc) · 4.54 KB
/
DenoisingAndInterpolation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import matplotlib.pyplot as plt
def generate_signal(frequencies, amplitudes, duration, sample_rate):
t = np.linspace(0, duration, int(duration * sample_rate), endpoint=False)
signal = sum(amplitude * np.sin(2 * np.pi * frequency * t) for frequency, amplitude in zip(frequencies, amplitudes))
return signal
def apply_filter(signal, filter_kernel):
signal_length = len(signal)
kernel_length = len(filter_kernel)
filtered_signal = np.zeros_like(signal)
for i in range(signal_length):
for j in range(kernel_length):
if i - j >= 0:
filtered_signal[i] += signal[i - j] * filter_kernel[j]
return filtered_signal
def add_noise(signal, noise_level):
noise = np.random.normal(0, noise_level, len(signal))
noisy_signal = signal + noise
return noisy_signal
def remove_random_samples(signal, percentage):
num_samples_to_remove = int(len(signal) * percentage)
indices_to_remove = np.random.choice(len(signal), num_samples_to_remove, replace=False)
signal_with_samples_removed = signal.copy()
signal_with_samples_removed[indices_to_remove] = np.nan
return signal_with_samples_removed
frequencies = [1.0, 2.0, 3.0, 4.0, 5.0]
amplitudes = [1.0, 0.8, 0.6, 0.4, 0.2]
duration = 5.0
sample_rate = 500
noise_level = 0.1
missing_samples_fraction = 0.10
window_size = 20
sigma = 2
original_signal = generate_signal(frequencies, amplitudes, duration, sample_rate)
noisy_signal = add_noise(original_signal, noise_level)
kernel=[1/window_size]*window_size
filter_kernel = np.array(kernel)
filtered_data=apply_filter(noisy_signal,filter_kernel)
signal_with_missing_samples = remove_random_samples(filtered_data, missing_samples_fraction)
plt.figure(figsize=(12, 6))
plt.subplot(311)
plt.plot(original_signal)
plt.title("Original Signal")
plt.subplot(312)
plt.plot(noisy_signal)
plt.title("Noisy Signal")
plt.subplot(313)
plt.plot(filtered_data)
plt.title("Filtered Signal")
plt.show()
def fill_missing_samples_mean(signal, window_size):
filled_signal = signal.copy()
for i in range(len(signal)):
if np.isnan(signal[i]):
start = max(0, i - window_size)
end = min(len(signal), i + window_size + 1)
filled_signal[i] = np.nanmean(signal[start:end])
return filled_signal
def fill_missing_samples_weighted_mean(signal, window_size, sigma):
filled_signal = signal.copy()
for i in range(len(signal)):
if np.isnan(signal[i]):
start = max(0, i - window_size)
end = min(len(signal), i + window_size + 1)
weights = np.exp(-((np.arange(start, end) - i) ** 2) / (2 * sigma**2))
filled_signal[i] = np.nansum(signal[start:end] * weights) / np.nansum(weights)
return filled_signal
def fill_missing_samples_line_fit(signal):
filled_signal = signal.copy()
nan_indices = np.isnan(signal)
valid_indices = ~nan_indices
for i in range(len(signal)):
if nan_indices[i]:
left_index, right_index = i - 1, i + 1
while left_index >= 0 and not valid_indices[left_index]:
left_index -= 1
while right_index < len(signal) and not valid_indices[right_index]:
right_index += 1
if left_index >= 0 and right_index < len(signal):
y_left, y_right = signal[left_index], signal[right_index]
slope = (y_right - y_left) / (right_index - left_index)
intercept = y_left - slope * left_index
filled_signal[i] = slope * i + intercept
return filled_signal
filled_signal_mean = fill_missing_samples_mean(signal_with_missing_samples, window_size)
filled_signal_weighted_mean = fill_missing_samples_weighted_mean(signal_with_missing_samples, window_size, sigma)
filled_signal_line_fit = fill_missing_samples_line_fit(signal_with_missing_samples)
plt.figure(figsize=(12, 10))
plt.subplot(511)
plt.plot(original_signal)
plt.title("Original Signal")
plt.subplot(512)
plt.plot(noisy_signal)
plt.title("Noisy Signal")
plt.subplot(513)
plt.plot(signal_with_missing_samples)
plt.title("Signal with Missing Samples")
plt.subplot(514)
plt.plot(filled_signal_mean)
plt.title("Filled with Mean")
plt.subplot(515)
plt.plot(filled_signal_weighted_mean, label="Weighted Mean (Gaussian Window)")
plt.plot(filled_signal_line_fit, label="Line Fit")
plt.legend()
plt.title("Filled with Weighted Mean and Line Fit")
plt.tight_layout()
plt.show()