-
Notifications
You must be signed in to change notification settings - Fork 45.6k
/
Copy pathflags.py
141 lines (123 loc) · 5.22 KB
/
flags.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The central place to define flags."""
from absl import flags
def define_flags():
"""Defines flags.
All flags are defined as optional, but in practice most models use some of
these flags and so mark_flags_as_required() should be called after calling
this function. Typically, 'experiment', 'mode', and 'model_dir' are required.
For example:
```
from absl import flags
from official.common import flags as tfm_flags # pylint: disable=line-too-long
...
tfm_flags.define_flags()
flags.mark_flags_as_required(['experiment', 'mode', 'model_dir'])
```
The reason all flags are optional is because unit tests often do not set or
use any of the flags.
"""
flags.DEFINE_string(
'experiment', default=None, help=
'The experiment type registered, specifying an ExperimentConfig.')
flags.DEFINE_enum(
'mode',
default=None,
enum_values=[
'train', 'eval', 'train_and_eval', 'continuous_eval',
'continuous_train_and_eval', 'train_and_validate',
'train_and_post_eval'
],
help='Mode to run: `train`, `eval`, `train_and_eval`, '
'`continuous_eval`, `continuous_train_and_eval` and '
'`train_and_validate` (which is not implemented in '
'the open source version).')
flags.DEFINE_string(
'model_dir',
default=None,
help='The directory where the model and training/evaluation summaries'
'are stored.')
flags.DEFINE_multi_string(
'config_file',
default=None,
help='YAML/JSON files which specifies overrides. The override order '
'follows the order of args. Note that each file '
'can be used as an override template to override the default parameters '
'specified in Python. If the same parameter is specified in both '
'`--config_file` and `--params_override`, `config_file` will be used '
'first, followed by params_override.')
flags.DEFINE_string(
'params_override',
default=None,
help='a YAML/JSON string or a YAML file which specifies additional '
'overrides over the default parameters and those specified in '
'`--config_file`. Note that this is supposed to be used only to override '
'the model parameters, but not the parameters like TPU specific flags. '
'One canonical use case of `--config_file` and `--params_override` is '
'users first define a template config file using `--config_file`, then '
'use `--params_override` to adjust the minimal set of tuning parameters, '
'for example setting up different `train_batch_size`. The final override '
'order of parameters: default_model_params --> params from config_file '
'--> params in params_override. See also the help message of '
'`--config_file`.')
# The libraries rely on gin often make mistakes that include flags inside
# the library files which causes conflicts.
try:
flags.DEFINE_multi_string(
'gin_file', default=None, help='List of paths to the config files.')
except flags.DuplicateFlagError:
pass
try:
flags.DEFINE_multi_string(
'gin_params',
default=None,
help='Newline separated list of Gin parameter bindings.')
except flags.DuplicateFlagError:
pass
flags.DEFINE_string(
'tpu',
default=None,
help='The Cloud TPU to use for training. This should be either the name '
'used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 '
'url.')
flags.DEFINE_string(
'tf_data_service', default=None, help='The tf.data service address')
flags.DEFINE_string(
'tpu_platform', default=None, help='TPU platform type.')
flags.DEFINE_string(
'tfhub_handle',
default=None,
help=(
'TFHub handle for publishing the model to TFHub. When this flag '
'is set your train.py should use xm_tfhub to publish to TFHub. '
'If using TFleX, prefer tflex_output_uri + TfHubPusher component.'
),
)
# To use TFleX components that consume a model, set this flag by configuring
# a TFleX tfx.borg.types.standard_artifacts.Model output artifact.
# (go/tflex-xm#connect-your-component-to-other-components)
# Meanwhile have your train.py save a serializable model to this destination:
# model.save(os.path.join(FLAGS.tflex_output_uri, 'Format-Servo'),
# save_format='tf')
# (https://www.tensorflow.org/guide/keras/serialization_and_saving)
flags.DEFINE_string(
'tflex_output_uri',
default=None,
help=(
'When running in TFleX, you can configure an XManagerLauncher output'
' to set this flag'
' (go/tflex-xm#connect-your-component-to-other-components)'
),
)