-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy path736. Parse Lisp Expression.c
273 lines (220 loc) · 7.59 KB
/
736. Parse Lisp Expression.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*
736. Parse Lisp Expression
You are given a string expression representing a Lisp-like expression to return the integer value of.
The syntax for these expressions is given as follows.
An expression is either an integer, a let-expression, an add-expression, a mult-expression, or an assigned variable. Expressions always evaluate to a single integer.
(An integer could be positive or negative.)
A let-expression takes the form (let v1 e1 v2 e2 ... vn en expr), where let is always the string "let", then there are 1 or more pairs of alternating variables and expressions, meaning that the first variable v1 is assigned the value of the expression e1, the second variable v2 is assigned the value of the expression e2, and so on sequentially; and then the value of this let-expression is the value of the expression expr.
An add-expression takes the form (add e1 e2) where add is always the string "add", there are always two expressions e1, e2, and this expression evaluates to the addition of the evaluation of e1 and the evaluation of e2.
A mult-expression takes the form (mult e1 e2) where mult is always the string "mult", there are always two expressions e1, e2, and this expression evaluates to the multiplication of the evaluation of e1 and the evaluation of e2.
For the purposes of this question, we will use a smaller subset of variable names. A variable starts with a lowercase letter, then zero or more lowercase letters or digits. Additionally for your convenience, the names "add", "let", or "mult" are protected and will never be used as variable names.
Finally, there is the concept of scope. When an expression of a variable name is evaluated, within the context of that evaluation, the innermost scope (in terms of parentheses) is checked first for the value of that variable, and then outer scopes are checked sequentially. It is guaranteed that every expression is legal. Please see the examples for more details on scope.
Evaluation Examples:
Input: (add 1 2)
Output: 3
Input: (mult 3 (add 2 3))
Output: 15
Input: (let x 2 (mult x 5))
Output: 10
Input: (let x 2 (mult x (let x 3 y 4 (add x y))))
Output: 14
Explanation: In the expression (add x y), when checking for the value of the variable x,
we check from the innermost scope to the outermost in the context of the variable we are trying to evaluate.
Since x = 3 is found first, the value of x is 3.
Input: (let x 3 x 2 x)
Output: 2
Explanation: Assignment in let statements is processed sequentially.
Input: (let x 1 y 2 x (add x y) (add x y))
Output: 5
Explanation: The first (add x y) evaluates as 3, and is assigned to x.
The second (add x y) evaluates as 3+2 = 5.
Input: (let x 2 (add (let x 3 (let x 4 x)) x))
Output: 6
Explanation: Even though (let x 4 x) has a deeper scope, it is outside the context
of the final x in the add-expression. That final x will equal 2.
Input: (let a1 3 b2 (add a1 1) b2)
Output 4
Explanation: Variable names can contain digits after the first character.
Note:
The given string expression is well formatted: There are no leading or trailing spaces, there is only a single space separating different components of the string, and no space between adjacent parentheses. The expression is guaranteed to be legal and evaluate to an integer.
The length of expression is at most 2000. (It is also non-empty, as that would not be a legal expression.)
The answer and all intermediate calculations of that answer are guaranteed to fit in a 32-bit integer.
*/
#define TYPE_INT 0
#define TYPE_ID 1
typedef struct {
char *p;
int len;
} idn_t;
typedef struct {
int type; // 0: identifier, 1: value
union {
idn_t id;
int num;
} u;
} expr_t;
typedef struct sym_s {
idn_t id;
int val;
int scope;
struct sym_s *list;
} sym_t;
typedef struct {
char *input;
sym_t *sym;
} p_t;
#define IS_LET(E) ((E)[0] == 'l' && \
(E)[1] == 'e' && \
(E)[2] == 't' && \
(E)[3] == ' ')
#define IS_ADD(E) ((E)[0] == 'a' && \
(E)[1] == 'd' && \
(E)[2] == 'd' && \
(E)[3] == ' ')
#define IS_MULT(E) ((E)[0] == 'm' && \
(E)[1] == 'u' && \
(E)[2] == 'l' && \
(E)[3] == 't' && \
(E)[4] == ' ')
#define IS_NUM(E) ((E)[0] >= '0' && \
(E)[0] <= '9')
char *next_input(char *input) {
int n = 0;
char c;
while (c = *(input ++)) {
if (c == '(') n ++;
else if (c == ')') {
if (n) n --;
else {
*(input - 1) = 0;
break;
}
}
}
if (*input == ' ') input ++;
//assert(0);
return input;
}
idn_t parse_identifier(p_t *p) {
char c;
idn_t id;
id.p = p->input;
do {
c = *(++ p->input);
} while (c != 0 && c != ' ');
id.len = p->input - id.p;
if (c == ' ') p->input ++;
return id;
}
expr_t parse_num(p_t *p) {
expr_t expr;
int neg = 0;
if (*p->input == '-') {
neg = 1;
p->input ++;
}
expr.type = TYPE_INT;
expr.u.num = 0;
do {
expr.u.num = expr.u.num * 10 + *p->input - '0';
p->input ++;
} while (IS_NUM(p->input));
if (neg) {
expr.u.num = 0 - expr.u.num;
}
if (*p->input == ' ') p->input ++;
return expr;
}
expr_t resolve(p_t *p, expr_t a) {
sym_t *sym;
if (a.type == TYPE_ID) {
sym = p->sym;
while (a.u.id.len != sym->id.len ||
strncmp(a.u.id.p, sym->id.p, sym->id.len)) sym = sym->list;
a.type = TYPE_INT;
a.u.num = sym->val;
}
return a;
}
expr_t parse(p_t *, int);
expr_t parse_let(p_t *p, int d) {
char c;
sym_t *sym;
expr_t a, b;
while (c = *p->input) {
if (c == ' ') {
p->input ++;
continue;
}
a = parse(p, d);
if (a.type == TYPE_INT) break;
if (*p->input) {
b = parse(p, d);
b = resolve(p, b);
sym = malloc(sizeof(*sym));
//assert(sym);
sym->id = a.u.id;
sym->val = b.u.num;
sym->scope = d;
sym->list = p->sym;
p->sym = sym;
}
}
if (a.type == TYPE_ID) {
a = resolve(p, a);
}
sym = p->sym;
while (sym && sym->scope == d) {
p->sym = sym->list;
free(sym);
sym = p->sym;
}
return a;
}
expr_t parse(p_t *p, int d) {
char c, *next;
expr_t a, b, sym, expr;
if ((c = *p->input) == '(') {
p->input ++;
next = next_input(p->input);
expr = parse(p, d + 1);
p->input = next;
} else if (IS_LET(p->input)) {
p->input += 4;
expr = parse_let(p, d);
} else if (IS_ADD(p->input)) {
p->input += 4;
a = parse(p, d);
b = parse(p, d);
a = resolve(p, a);
b = resolve(p, b);
expr.type = TYPE_INT;
expr.u.num = a.u.num + b.u.num;
} else if (IS_MULT(p->input)) {
p->input += 5;
a = parse(p, d);
b = parse(p, d);
a = resolve(p, a);
b = resolve(p, b);
expr.type = TYPE_INT;
expr.u.num = a.u.num * b.u.num;
} else if (IS_NUM(p->input) ||
*p->input == '-') {
expr = parse_num(p);
} else {
expr.type = TYPE_ID;
expr.u.id = parse_identifier(p);
}
//assert(*p->input == 0);
return expr;
}
int evaluate(char * expression) {
expr_t result;
p_t p = { 0 };
p.input = expression;
result = parse(&p, 0);
return result.u.num;
}
/*
Difficulty:Hard
*/