-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy path958. Check Completeness of a Binary Tree.c
88 lines (61 loc) · 1.74 KB
/
958. Check Completeness of a Binary Tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
/*
958. Check Completeness of a Binary Tree
Given a binary tree, determine if it is a complete binary tree.
Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.
Example 1:
Input: [1,2,3,4,5,6]
Output: true
Explanation: Every level before the last is full (ie. levels with node-values {1} and {2, 3}), and all nodes in the last level ({4, 5, 6}) are as far left as possible.
Example 2:
Input: [1,2,3,4,5,null,7]
Output: false
Explanation: The node with value 7 isn't as far left as possible.
Note:
The tree will have between 1 and 100 nodes.
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
typedef struct {
int d;
bool shrinked;
} dep_t;
bool verify_depth(dep_t *dep, int d) {
if (dep->d == -1) { // first time verifying a depth
dep->d = d;
return true;
}
// assert(d <= dep->d);
if (d == dep->d - 1 && !dep->shrinked) {
dep->d --;
dep->shrinked = true;
}
if (d == dep->d) {
return true;
}
return false;
}
bool traversal(struct TreeNode *node, dep_t *dep, int d) {
if (!node) {
if (!verify_depth(dep, d)) return false;
} else {
if (!traversal(node->left, dep, d + 1)) return false;
if (!traversal(node->right, dep, d + 1)) return false;
}
return true;
}
bool isCompleteTree(struct TreeNode* root) {
dep_t dep = { -1, false };
return traversal(root, &dep, 0);
}
/*
Difficulty:Medium
*/