forked from manishbisht/Competitive-Programming
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDijkstra_priority_queue.cpp
85 lines (71 loc) · 2.13 KB
/
Dijkstra_priority_queue.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
// Program to find Dijkstra's shortest path using priority_queue with vectors
#include<bits/stdc++.h>
using namespace std;
# define INF 0x3f3f3f3f
// iPair ==> Integer Pair
typedef pair<int, int> iPair;
// To add an edge
void addEdge(vector <pair<int, int> > adj[], int u, int v, int wt)
{
adj[u].push_back(make_pair(v, wt));
adj[v].push_back(make_pair(u, wt));
}
// Prints shortest paths from src to all other vertices
void shortestPath(vector<pair<int,int> > adj[], int V, int src)
{
// Create a priority queue to store vertices that are being preprocessed.
priority_queue< iPair, vector <iPair> , greater<iPair> > pq;
// Create a vector for distances and initialize all distances as infinite (INF)
vector<int> dist(V, INF);
// Insert source itself in priority queue and initialize its distance as 0.
pq.push(make_pair(0, src));
dist[src] = 0;
// Looping till priority queue becomes empty
while (!pq.empty())
{
// The first vertex in pair is the minimum distance vertex, extract it from priority queue. Vertex label is stored in second of pair.
int u = pq.top().second;
pq.pop();
// Get all adjacent of u.
for (auto x : adj[u])
{
// Get vertex label and weight of current adjacent of u.
int v = x.first;
int weight = x.second;
// If there is shorted path to v through u.
if (dist[v] > dist[u] + weight)
{
// Updating distance of v
dist[v] = dist[u] + weight;
pq.push(make_pair(dist[v], v));
}
}
}
// Print shortest distances stored in dist[]
printf("Vertex Distance from Source\n");
for (int i = 0; i < V; ++i)
printf("%d \t\t %d\n", i, dist[i]);
}
// Driver program
int main()
{
int V = 9;
vector<iPair > adj[V];
// making above shown graph
addEdge(adj, 0, 1, 4);
addEdge(adj, 0, 7, 8);
addEdge(adj, 1, 2, 8);
addEdge(adj, 1, 7, 11);
addEdge(adj, 2, 3, 7);
addEdge(adj, 2, 8, 2);
addEdge(adj, 2, 5, 4);
addEdge(adj, 3, 4, 9);
addEdge(adj, 3, 5, 14);
addEdge(adj, 4, 5, 10);
addEdge(adj, 5, 6, 2);
addEdge(adj, 6, 7, 1);
addEdge(adj, 6, 8, 6);
addEdge(adj, 7, 8, 7);
shortestPath(adj, V, 0);
return 0;
}