用
对于每个询问
class Solution:
def occurrencesOfElement(self, nums: List[int], queries: List[int], x: int) -> List[int]:
pos = [i for i, num in enumerate(nums) if num == x]
return [-1 if q > len(pos) else pos[q - 1] for q in queries]
class Solution {
public int[] occurrencesOfElement(int[] nums, int[] queries, int x) {
List<Integer> pos = new ArrayList<>();
for (int i = 0; i < nums.length; i++) {
if (nums[i] == x) {
pos.add(i);
}
}
for (int i = 0; i < queries.length; i++) {
queries[i] = queries[i] > pos.size() ? -1 : pos.get(queries[i] - 1);
}
return queries;
}
}
class Solution {
public:
vector<int> occurrencesOfElement(vector<int>& nums, vector<int>& queries, int x) {
vector<int> pos;
for (int i = 0; i < nums.size(); i++) {
if (nums[i] == x) {
pos.push_back(i);
}
}
for (int& q : queries) {
q = q > pos.size() ? -1 : pos[q - 1];
}
return queries;
}
};
int* occurrencesOfElement(int* nums, int numsSize, int* queries, int queriesSize, int x, int* returnSize) {
int* pos = malloc(numsSize * sizeof(int));
int k = 0;
for (int i = 0; i < numsSize; i++) {
if (nums[i] == x) {
pos[k++] = i;
}
}
for (int i = 0; i < queriesSize; i++) {
queries[i] = queries[i] > k ? -1 : pos[queries[i] - 1];
}
free(pos);
*returnSize = queriesSize;
return queries;
}
func occurrencesOfElement(nums, queries []int, x int) []int {
pos := []int{}
for i, num := range nums {
if num == x {
pos = append(pos, i)
}
}
for i, q := range queries {
if q > len(pos) {
queries[i] = -1
} else {
queries[i] = pos[q-1]
}
}
return queries
}
var occurrencesOfElement = function(nums, queries, x) {
const pos = [];
for (let i = 0; i < nums.length; i++) {
if (nums[i] === x) {
pos.push(i);
}
}
return queries.map(q => q > pos.length ? -1 : pos[q - 1]);
};
impl Solution {
pub fn occurrences_of_element(nums: Vec<i32>, queries: Vec<i32>, x: i32) -> Vec<i32> {
let pos = nums.iter()
.enumerate()
.filter(|(_, &num)| num == x)
.map(|(i, _)| i)
.collect::<Vec<_>>();
queries.iter()
.map(|&q| if q as usize > pos.len() { -1 } else { pos[q as usize - 1] as i32 })
.collect()
}
}
- 时间复杂度:$\mathcal{O}(n+q)$,其中
是 的长度,$q$ 是 的长度。 - 空间复杂度:$\mathcal{O}(n)$。返回值不计入。
- 滑动窗口与双指针(定长/不定长/单序列/双序列/三指针/分组循环)
- 二分算法(二分答案/最小化最大值/最大化最小值/第K小)
- 单调栈(基础/矩形面积/贡献法/最小字典序)
- 网格图(DFS/BFS/综合应用)
- 位运算(基础/性质/拆位/试填/恒等式/思维)
- 图论算法(DFS/BFS/拓扑排序/最短路/最小生成树/二分图/基环树/欧拉路径)
- 动态规划(入门/背包/状态机/划分/区间/状压/数位/数据结构优化/树形/博弈/概率期望)
- 常用数据结构(前缀和/差分/栈/队列/堆/字典树/并查集/树状数组/线段树)
- 数学算法(数论/组合/概率期望/博弈/计算几何/随机算法)
- 贪心与思维(基本贪心策略/反悔/区间/字典序/数学/思维/脑筋急转弯/构造)
- 链表、二叉树与回溯(前后指针/快慢指针/DFS/BFS/直径/LCA/一般树)
- 字符串(KMP/Z函数/Manacher/字符串哈希/AC自动机/后缀数组/子序列自动机)
欢迎关注 B站@灵茶山艾府