-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcoci08c6p3.cpp
42 lines (42 loc) · 1.14 KB
/
coci08c6p3.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// Ivan Carvalho
// Solution to https://dmoj.ca/problem/coci08c6p3
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 110;
int matriz[MAXN][MAXN];
int N, M, resp;
int calcula(int x1, int y1, int x2, int y2) {
return matriz[x2][y2] - matriz[x1 - 1][y2] - matriz[x2][y1 - 1] +
matriz[x1 - 1][y1 - 1];
}
int solve(int t1, int t2) {
int ret = M;
for (int ini = 1, fim = t1; fim <= N; ini++, fim++) {
for (int comeco = 1, termino = t2; termino <= N; comeco++, termino++) {
ret = min(M - calcula(ini, comeco, fim, termino), ret);
}
}
return ret;
}
int main() {
scanf("%d %d", &N, &M);
resp = M;
for (int i = 1; i <= M; i++) {
int x, y;
scanf("%d %d", &x, &y);
matriz[x][y] = 1;
}
for (int i = 1; i <= N; i++) {
for (int j = 1; j <= N; j++) {
matriz[i][j] = matriz[i][j] + matriz[i][j - 1] + matriz[i - 1][j] -
matriz[i - 1][j - 1];
}
}
for (int i = 1; i <= M; i++) {
if (M % i == 0) {
resp = min(resp, solve(i, M / i));
}
}
printf("%d\n", resp);
return 0;
}