-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
156 lines (130 loc) · 5.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import logging
import os
import pandas as pd
import yaml
import json
import time
import paho.mqtt.client as mqtt
from data_processing.analytics.anomaly_detection import detect_anomaly
from data_processing.analytics.pattern_recognition import PatternRecognizer
from data_processing.data_collector import collect_data
from data_processing.data_processor import process_data
from communication.mqtt_client import MQTTClient
from algorithms.supply_adjustment import SupplyAdjustment
from algorithms.asset_management import AssetManagement
from algorithms.prediction_model import DemandPredictionModel
from features.dynamic_pegging import DynamicPegging
from features.decentralized_reserve import DecentralizedReserve
from features.cross_chain_interoperability import CrossChainInteroperability
from features.security_protocols import AdvancedSecurity
from features.wallet_solutions import UserFriendlyWallet
from features.bridge_system import BridgeSystem
from features.dual_value_system import DualValueSystem
def load_config(env='development'):
"""Load configuration from the specified environment."""
config_file = f'config/{env}.yaml'
try:
with open(config_file, 'r') as file:
config = yaml.safe_load(file)
logging.info(f'Loaded configuration for {env} environment.')
return config
except FileNotFoundError:
logging.error(f'Configuration file {config_file} not found.')
raise
except yaml.YAMLError as e:
logging.error(f'Error parsing YAML configuration: {e}')
raise
def initialize_algorithms(config):
"""Initialize the algorithms with the loaded configuration."""
supply_adjuster = SupplyAdjustment()
asset_manager = AssetManagement()
demand_model = DemandPredictionModel()
# Load historical data for training
try:
historical_data = pd.read_csv(config['data']['historical_data_path'])
supply_adjuster.train_model(historical_data)
asset_manager.train_model(historical_data)
demand_model.train_model(historical_data)
logging.info('Successfully trained models with historical data.')
except Exception as e:
logging.error(f'Error loading historical data: {e}')
raise
return supply_adjuster, asset_manager, demand_model
def implement_dynamic_pegging(pegging_system, market_conditions):
"""Implement dynamic pegging mechanism."""
try:
pegging_system.adjust_supply(market_conditions)
logging.info('Dynamic pegging mechanism executed successfully.')
except Exception as e:
logging.error(f'Error in dynamic pegging: {e}')
raise
def manage_decentralized_reserve(reserve_system):
"""Manage decentralized reserve system."""
try:
reserve_system.update_reserves()
logging.info('Decentralized reserve system updated successfully.')
except Exception as e:
logging.error(f'Error managing decentralized reserve: {e}')
raise
def main():
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Load configuration
environment = os.getenv('APP_ENV', 'development') # Default to development
config = load_config(environment)
# Initialize algorithms
supply_adjuster, asset_manager, demand_model = initialize_algorithms(config)
# Initialize new features
dynamic_pegging = DynamicPegging()
decentralized_reserve = DecentralizedReserve()
cross_chain = CrossChainInteroperability()
security_protocols = AdvancedSecurity()
wallet_solutions = UserFriendlyWallet()
bridge_system = BridgeSystem()
dual_value_system = DualValueSystem()
# Initialize MQTT client for communication
mqtt_client = MQTTClient(config['mqtt'])
mqtt_client.connect()
# Data collection and processing loop
recognizer = PatternRecognizer(window_size=5)
try:
while True:
# Collect data from sensors
sensor_data = collect_data() # Implement this function to collect data
logging.info(f"Collected sensor data: {sensor_data}")
# Process the collected data
if detect_anomaly(sensor_data):
logging.warning("Anomaly detected in sensor data.")
continue # Skip processing if anomaly detected
recognizer.add_data(sensor_data['temperature'], sensor_data['humidity'])
patterns = recognizer.recognize_patterns()
# Example usage of the models
market_price = 105
current_supply = 1000
other_factors = 1
# Predict demand
predicted_demand = demand_model.predict(market_price, current_supply, other_factors)
# Current allocations
current_allocations = {'Asset_A': 1000, 'Asset_B': 1100}
# Adjust allocations based on market conditions
market_conditions = 1 # Example market condition
new_allocations = asset_manager.adjust_allocations(current_allocations, market_conditions)
# Implement dynamic pegging
implement_dynamic_pegging(dynamic_pegging, market_conditions)
# Manage decentralized reserve
manage_decentralized_reserve(decentralized_reserve)
# Log final allocations
logging.info(f'Final Allocations: {new_allocations}')
# Publish processed data to MQTT broker
mqtt_client.publish("sensor/data", json.dumps(sensor_data))
mqtt_client.publish("market/allocations", json.dumps(new_allocations))
# Sleep for a defined interval before the next iteration
time.sleep(config['data']['collection_interval'])
except KeyboardInterrupt:
logging.info("Shutting down the application.")
except Exception as e:
logging.error(f'An unexpected error occurred: {e}')
finally:
mqtt_client.disconnect()
if __name__ == "__main__":
main()