-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdata_processing.py
92 lines (81 loc) · 3.1 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# nbca/data_processing.py
import logging
import numpy as np
class DataProcessing:
def __init__(self):
"""Initialize the Data Processing module."""
logging.info("Data Processing module initialized.")
def analyze_event(self, event):
"""
Analyze a detected neutrino event.
:param event: The neutrino event data to analyze.
:return: Analysis results.
"""
logging.info(f"Analyzing event: {event['event_id']}")
energy = event['energy']
direction = event['direction']
# Perform analysis (e.g., classify event based on energy)
classification = self.classify_event(energy)
logging.info(f"Event classified as: {classification}")
# Extract features
features = self.extract_features(event)
logging.info(f"Extracted features: {features}")
return {
"event_id": event['event_id'],
"classification": classification,
"features": features
}
def classify_event(self, energy):
"""
Classify the neutrino event based on its energy.
:param energy: The energy of the neutrino event.
:return: Classification label.
"""
if energy < 1e-4:
return "Low Energy"
elif energy < 1e-2:
return "Medium Energy"
else:
return "High Energy"
def extract_features(self, event):
"""
Extract features from the neutrino event for further analysis.
:param event: The neutrino event data.
:return: Feature vector.
"""
# Example feature extraction
features = np.array([
event['energy'], # Energy of the event
event['direction']['theta'], # Polar angle
event['direction']['phi'] # Azimuthal angle
])
return features
def format_data(self, processed_data):
"""
Format the processed data for transmission or storage.
:param processed_data: The processed data to format.
:return: Formatted data as a dictionary.
"""
formatted_data = {
"event_id": processed_data['event_id'],
"classification": processed_data['classification'],
"features": processed_data['features'].tolist() # Convert numpy array to list
}
logging.info(f"Formatted data for transmission: {formatted_data}")
return formatted_data
def save_to_database(self, formatted_data):
"""
Save the formatted data to a database (simulated).
:param formatted_data: The data to save.
"""
# Simulate saving to a database
logging.info(f"Saving data to database: {formatted_data}")
# In a real implementation, this would involve database operations
def process_event(self, event):
"""
Process a neutrino event from detection to storage.
:param event: The neutrino event data to process.
"""
analyzed_data = self.analyze_event(event)
formatted_data = self.format_data(analyzed_data)
self.save_to_database(formatted_data)