forked from CSEdgeOfficial/Python-Programming-Internship
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTask3
45 lines (36 loc) · 1.42 KB
/
Task3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import pandas as pd
data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]
# Load the Boston housing dataset
X = data
y = target
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize the linear regression model
model = LinearRegression()
# Fit the model on the training data
model.fit(X_train, y_train)
# Predict on the training and testing data
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
# Calculate the scores
train_score = model.score(X_train, y_train)
test_score = model.score(X_test, y_test)
print("Training score:", train_score)
print("Testing score:", test_score)
# Plot residuals
plt.scatter(y_train_pred, y_train_pred - y_train, c='blue', marker='o', label='Training data')
plt.scatter(y_test_pred, y_test_pred - y_test, c='lightgreen', marker='s', label='Testing data')
plt.xlabel('Predicted values')
plt.ylabel('Residuals')
plt.legend(loc='upper left')
plt.hlines(y=0, xmin=0, xmax=50, lw=2, color='red')
plt.title('Residual plot')
plt.show()