-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathenv.py
221 lines (176 loc) · 6.25 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import importlib
import os
import platform
import subprocess
import sys
from typing import List, Optional
import cv2
import paddle
import paddleseg
import paddle3d
def init_distributed():
"""
"""
if not is_distributed_inited():
paddle.distributed.fleet.init(is_collective=True)
def is_distributed_inited():
"""
"""
return paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
)
def get_package_version(package: str) -> str:
"""
"""
try:
module = importlib.import_module(package)
version = module.__version__
except:
version = 'Not Installed'
return version
def get_envrionment_flags(FLAG: str) -> str:
return os.environ.get(FLAG, 'Not set.')
def get_gcc_info() -> str:
"""
"""
try:
gcc = subprocess.check_output(['gcc', '--version']).decode()
gcc = gcc.strip().split('\n')[0]
except:
gcc = 'Not Found.'
return gcc
def get_nvcc_info(cuda_home):
if cuda_home is not None and os.path.isdir(cuda_home):
try:
nvcc = os.path.join(cuda_home, 'bin/nvcc')
nvcc = subprocess.check_output(
"{} -V".format(nvcc), shell=True).decode()
nvcc = nvcc.strip().split('\n')[-1]
except subprocess.SubprocessError:
nvcc = "Not Available"
else:
nvcc = "Not Available"
return nvcc
def get_cuda_device_info(devices: Optional[List[int]] = None) -> List[str]:
if devices is None:
try:
devices = get_envrionment_flags('CUDA_VISIBLE_DEVICES')
devices = [int(device) for device in devices.split(',')]
except:
devices = []
try:
cmds = ['nvidia-smi', '-L']
gpu_info = subprocess.check_output(cmds)
gpu_info = gpu_info.decode().strip().split('\n')
gpu_info = [' '.join(gpu_info[i].split(' ')[:4]) for i in devices]
except:
gpu_info = ['Not Found.']
return gpu_info
def get_env_info():
msgs = []
msgs.append('------------Environment Information-------------')
# add platform info
msgs.append('platform:')
msgs.append(' {}'.format(platform.platform()))
msgs.append(' {}'.format(get_gcc_info()))
msgs.append(' Python - {}'.format(sys.version.replace('\n', ' ')))
# add Science Toolkits info
st_pakcages = {
'cv2': get_package_version('cv2'),
'numpy': get_package_version('numpy'),
'numba': get_package_version('numba'),
'pandas': get_package_version('pandas'),
'pillow': get_package_version('PIL'),
'skimage': get_package_version('skimage')
}
msgs.append('\nScience Toolkits:')
for package, version in st_pakcages.items():
msgs.append(' {} - {}'.format(package, version))
if paddle.is_compiled_with_cuda():
_paddle = 'paddle(gpu)'
else:
_paddle = 'paddle'
paddle_packages = {
_paddle: paddle.__version__,
'paddle3d': paddle3d.__version__,
'paddleseg': paddleseg.__version__
}
paddle_flags = [
'FLAGS_cudnn_deterministic', 'FLAGS_cudnn_exhaustive_search'
]
# add Paddle info
msgs.append('\nPaddlePaddle:')
for package, version in paddle_packages.items():
msgs.append(' {} - {}'.format(package, version))
for flag in paddle_flags:
msgs.append(' {} - {}'.format(flag, get_envrionment_flags(flag)))
# add CUDA info
msgs.append('\nCUDA:')
msgs.append(' cudnn - {}'.format(paddle.get_cudnn_version()))
msgs.append(' nvcc - {}'.format(get_nvcc_info(get_cuda_home())))
# TODO: Add nccl version
# add GPU info
msgs.append('\nGPUs:')
for device in get_cuda_device_info():
msgs.append(' {}'.format(device))
msgs.append('------------------------------------------------')
return '\n'.join(msgs)
def get_cuda_home():
'''Finds the CUDA install path. It refers to the implementation of
pytorch <https://github.com/pytorch/pytorch/blob/master/torch/utils/cpp_extension.py>.
'''
# Guess #1
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
if cuda_home is None:
# Guess #2
try:
which = 'where' if IS_WINDOWS else 'which'
nvcc = subprocess.check_output([which, 'nvcc'],
stderr=subprocess.STDOUT)
cuda_home = os.path.dirname(
os.path.dirname(nvcc.decode().rstrip('\r\n')))
except Exception:
# Guess #3
if IS_WINDOWS:
cuda_homes = glob.glob(
'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*')
if len(cuda_homes) == 0:
cuda_home = ''
else:
cuda_home = cuda_homes[0]
else:
cuda_home = '/usr/local/cuda'
if not os.path.exists(cuda_home):
cuda_home = None
return cuda_home
def get_user_home() -> str:
return os.path.expanduser('~')
def get_paddle3d_home() -> str:
return os.path.join(get_user_home(), '.paddle3d')
def get_sub_home(directory: str) -> str:
home = os.path.join(get_paddle3d_home(), directory)
os.makedirs(home, exist_ok=True)
return home
USER_HOME = get_user_home()
PADDLE3D_HOME = get_paddle3d_home()
PRETRAINED_HOME = get_sub_home('pretrained')
TMP_HOME = get_sub_home('tmp')
IS_WINDOWS = sys.platform == 'win32'
nranks = paddle.distributed.ParallelEnv().nranks
local_rank = paddle.distributed.ParallelEnv().local_rank
# supress Numba warnings
os.environ["NUMBA_DISABLE_PERFORMANCE_WARNINGS"] = "1"
os.environ["NUMBA_CUDA_LOW_OCCUPANCY_WARNINGS"] = "0"