-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathMaxFlowPushRelabel.cc
151 lines (130 loc) · 3.99 KB
/
MaxFlowPushRelabel.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <utility>
#include <queue>
#include <stack>
#include <cassert>
#define sd(x) scanf("%d",&x)
#define sd2(x,y) scanf("%d%d",&x,&y)
#define sd3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define fi first
#define se second
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
#define LET(x, a) __typeof(a) x(a)
#define foreach(it, v) for(LET(it, v.begin()); it != v.end(); it++)
#define _ ios_base::sync_with_stdio(false);cin.tie(NULL);cerr.tie(NULL);
#define __ freopen("input.txt","r",stdin);freopen("output.txt","w",stdout);
#define meta __FUNCTION__<<' '<<__LINE__<<' '
#define tr(x) cerr<<meta<<#x<<' '<<x<<'\n';
#define tr2(x,y) cerr<<meta<<#x<<' '<<x<<' '<<#y<<' '<<y<<'\n';
#define tr3(x,y,z) cerr<<meta<<#x<<' '<<x<<' '<<#y<<' '<<y<<' '<<#z<<' '<<z<<'\n';
#define tr4(w,x,y,z) cerr<<meta<<#w<<' '<<w<<' '<<#x<<' ' <<x<<' '<<#y<<' '<<y<<' '<<#z<<' '<<z<<'\n';
#define tr5(v,w,x,y,z) cerr<<meta<<#v<<' '<<v<<' '<<#w<<' '<<w<<' '<<#x<<' '<<x<<' '<<#y<<' '<<y<<' '<<#z<<' '<<z<<'\n';
#define tr6(u,v,w,x,y,z) cerr<<meta<<#u<<' '<<u<<' '<<#v<<' '<<v<<' '<<#w<<' '<<w<<' '<<#x<<' '<<x<<' '<<#y<<' '<<y<<' '<<#z<<' '<<z<<'\n';
using namespace std;
// Adjacency list implementation of FIFO push relabel maximum flow
// with the gap relabeling heuristic. This implementation is
// significantly faster than straight Ford-Fulkerson. It solves
// random problems with 10000 vertices and 1000000 edges in a few
// seconds, though it is possible to construct test cases that
// achieve the worst-case.
//
// Running time:
// O(|V|^3)
//
// INPUT:
// - graph, constructed using AddEdge()
// - source
// - sink
//
// OUTPUT:
// - maximum flow value
// - To obtain the actual flow values, look at all edges with
// capacity > 0 (zero capacity edges are residual edges).
typedef long long LL;
struct Edge {
int from, to, cap, flow, index;
Edge(int from, int to, int cap, int flow, int index) :
from(from), to(to), cap(cap), flow(flow), index(index) {}
};
struct PushRelabel {
int N;
vector<vector<Edge> > G;
vector<LL> excess;
vector<int> dist, active, count;
queue<int> Q;
PushRelabel(int N) : N(N), G(N), excess(N), dist(N), active(N), count(2*N) {}
void AddEdge(int from, int to, int cap) {
G[from].push_back(Edge(from, to, cap, 0, G[to].size()));
if (from == to) G[from].back().index++;
G[to].push_back(Edge(to, from, 0, 0, G[from].size() - 1));
}
void Enqueue(int v) {
if (!active[v] && excess[v] > 0) { active[v] = true; Q.push(v); }
}
void Push(Edge &e) {
int amt = int(min(excess[e.from], LL(e.cap - e.flow)));
if (dist[e.from] <= dist[e.to] || amt == 0) return;
e.flow += amt;
G[e.to][e.index].flow -= amt;
excess[e.to] += amt;
excess[e.from] -= amt;
Enqueue(e.to);
}
void Gap(int k) {
for (int v = 0; v < N; v++) {
if (dist[v] < k) continue;
count[dist[v]]--;
dist[v] = max(dist[v], N+1);
count[dist[v]]++;
Enqueue(v);
}
}
void Relabel(int v) {
count[dist[v]]--;
dist[v] = 2*N;
for (int i = 0; i < G[v].size(); i++)
if (G[v][i].cap - G[v][i].flow > 0)
dist[v] = min(dist[v], dist[G[v][i].to] + 1);
count[dist[v]]++;
Enqueue(v);
}
void Discharge(int v) {
for (int i = 0; excess[v] > 0 && i < G[v].size(); i++) Push(G[v][i]);
if (excess[v] > 0) {
if (count[dist[v]] == 1)
Gap(dist[v]);
else
Relabel(v);
}
}
LL GetMaxFlow(int s, int t) {
count[0] = N-1;
count[N] = 1;
dist[s] = N;
active[s] = active[t] = true;
for (int i = 0; i < G[s].size(); i++) {
excess[s] += G[s][i].cap;
Push(G[s][i]);
}
while (!Q.empty()) {
int v = Q.front();
Q.pop();
active[v] = false;
Discharge(v);
}
LL totflow = 0;
for (int i = 0; i < G[s].size(); i++) totflow += G[s][i].flow;
return totflow;
}
};
int main(){
return 0;
}